border1s = [0, num_train-self.seq_len, len(df_raw)-num_test-self.seq_len] border2s = [num_train, num_train+num_vali, len(df_raw)]
时间: 2024-01-27 16:03:01 浏览: 167
这段代码看起来是在计算训练集、验证集和测试集的边界索引。`border1s`是训练集和验证集的起始索引,`border2s`是训练集、验证集和测试集的结束索引。其中,`num_train`表示训练集样本数,`self.seq_len`表示每个样本的序列长度,`len(df_raw)`表示数据集的总样本数。你可以根据这些边界索引来划分数据集。
相关问题
seq_segment = [0] * len(fact_tokens_) seq_idx = self.tokenizer.convert_tokens_to_ids(fact_tokens_) seq_padding = [0] * (self.max_seq_len - len(seq_idx)) seq_mask = [1] * len(seq_idx) + seq_padding seq_idx = seq_idx + seq_padding seq_segment = seq_segment + seq_padding assert len(seq_idx) == self.max_seq_len assert len(seq_mask) == self.max_seq_len assert len(seq_segment) == self.max_seq_len token_id_full.append(seq_idx) token_id_full.append(seq_mask) token_id_full.append(seq_segment) labels_num = len(self.labels2id) labels_tensor = torch.FloatTensor(labels_num).fill_(0) if self.inference == False: for label in labels: labels_tensor[self.labels2id[label]] = 1 token_id_full.append(labels_tensor) contens.append(token_id_full) return contens
这段代码是用于准备模型的输入数据的。首先将输入的文本转换为token序列,然后对序列进行padding操作,使其长度为固定的max_seq_len。接着生成对应的mask和segment,将它们和token序列一起作为模型的输入。最后,如果是训练模式,则将标签转换为one-hot向量,作为模型的输出。整个过程将所有文本的数据整合在一起返回。
def define_gan(self): self.generator_aux=Generator(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) self.supervisor=Supervisor(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.discriminator=Discriminator(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.recovery = Recovery(self.hidden_dim, self.n_seq).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.embedder = Embedder(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) X = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RealData') Z = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RandomNoise')
这段代码定义了一个名为define_gan的方法,用于在GAN模型中定义生成器(generator)、监督模型(supervisor)、判别器(discriminator)、恢复模型(recovery)和嵌入器(embedder)。
在该方法中,使用各个类的build方法构建了相应的模型,并将其存储在相应的实例变量中:
- self.generator_aux:通过调用Generator类的build方法构建生成器模型。input_shape参数设置为(self.seq_len, self.n_seq)。
- self.supervisor:通过调用Supervisor类的build方法构建监督模型。input_shape参数设置为(self.hidden_dim, self.hidden_dim)。
- self.discriminator:通过调用Discriminator类的build方法构建判别器模型。input_shape参数设置为(self.hidden_dim, self.hidden_dim)。
- self.recovery:通过调用Recovery类的build方法构建恢复模型。input_shape参数设置为(self.hidden_dim, self.hidden_dim)。
- self.embedder:通过调用Embedder类的build方法构建嵌入器模型。input_shape参数设置为(self.seq_len, self.n_seq)。
接下来,定义了两个输入层对象X和Z。它们分别表示真实数据输入和随机噪声输入。X和Z的形状分别为[self.seq_len, self.n_seq],batch_size设置为self.batch_size。
这段代码的目的是在GAN模型中定义各个组件,并创建输入层对象以供后续使用。
阅读全文