test_path = "stock_daily/8/stock_test.csv" with open(test_path) as f: self.data = np.loadtxt(f, delimiter=",") # addi=np.zeros((self.data.shape[0],1)) # self.data=np.concatenate((self.data,addi),axis=1) self.data = self.data[:, 0:6] # self.data = np.vstack((self.data1, self.data[:, 4])) for i in range(len(self.data[0])): self.data[:, i] = (self.data[:, i] - mean_list[i]) / (std_list[i] + 1e-8) self.value = torch.rand(self.data.shape[0] - SEQ_LEN, SEQ_LEN, self.data.shape[1]) self.label = torch.rand(self.data.shape[0] - SEQ_LEN, 1) for i in range(self.data.shape[0] - SEQ_LEN): self.value[i, :, :] = torch.from_numpy(self.data[i:i + SEQ_LEN, :].reshape(SEQ_LEN, self.data.shape[1])) self.label[i, :] = self.data[i + SEQ_LEN, 0] self.data = self.value
时间: 2023-06-19 08:04:16 浏览: 84
apr-1.7.0-apr_escape_test_char.h.zip
这段代码是一个数据预处理的过程,首先从指定路径读取测试数据,然后将读取的数据进行归一化处理,接着将处理后的数据按照指定的时间序列长度(SEQ_LEN)切分成多个小数据集(value),同时对应的标签(label)为每个小数据集的最后一个时间点的数据。最后将处理后的数据存储在self.data中。这个过程是为了将原始的数据转化为神经网络可以接受的形式,以便进行训练和预测。
阅读全文