from BP import BPNeuralNetwork import numpy as np import pandas as pd # 读取 Excel 文件并划分数据集 train_input=pd.read_excel('test.xlsx', nrows=100, usecols=[1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21, 22, 23, 24, 25, 26,27,28,29,30,31, 32, 33, 34,35]) test_input=pd.read_excel('test.xlsx', skiprows=100, nrows=50, usecols=[1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21, 22, 23, 24, 25, 26,27,28,29,30,31, 32, 33, 34,35]) train_output=pd.read_excel('test.xlsx', nrows=100, usecols=[36]) test_output=pd.read_excel('test.xlsx', skiprows=100, nrows=50, usecols=[36]) # 构建神经网络模型并训练 nn = BPNeuralNetwork(num_input=train_input.shape[1], num_hidden=3, num_output=train_output.shape[1], learning_rate=0.1) nn.train(train_input, train_output, num_epochs=500) # 在测试集上进行预测并计算准确率 y_pred = nn.predict(test_input) for i in range(test_output.shape[0]): right=0 if test_output[i] == y_pred[i]: right+=1 #y_pred_label = np.argmax(y_pred, axis=1) #y_test_label = np.argmax(test_output, axis=1) accuracy = right/test_output.shape[0] print("Accuracy: {:.2f}%".format(accuracy * 100))

时间: 2023-09-21 08:14:01 浏览: 74
根据你提供的代码,出现错误的位置是在以下代码段: ```python for i in range(test_output.shape[0]): right=0 if test_output[i] == y_pred[i]: right+=1 accuracy = right/test_output.shape[0] ``` 在这段代码中,你尝试比较 `test_output[i]` 和 `y_pred[i]` 是否相等,并根据判断结果计算准确率。但是,在这个循环中,你每次都将 `right` 的值重置为 0,导致无法正确计算准确率。 为了解决这个问题,你可以将 `right=0` 的赋值放在循环外面,以确保它只被初始化一次。同时,你需要将 `right` 的定义放在循环外面,以便在循环结束后可以正确使用它来计算准确率。修改后的代码如下所示: ```python right = 0 for i in range(test_output.shape[0]): if test_output[i] == y_pred[i]: right += 1 accuracy = right / test_output.shape[0] print("Accuracy: {:.2f}%".format(accuracy * 100)) ``` 现在,你应该能够正确计算预测的准确率了。如果还有其他问题,请随时提问。
相关问题

from BP import BPNeuralNetwork import numpy as np import pandas as pd # 读取 Excel 文件并划分数据集 train_input=pd.read_excel('test.xlsx', nrows=100, usecols=[0,1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21, 22, 23, 24, 25, 26,27,28,29,30,31, 32, 33, 34]) test_input=pd.read_excel('test.xlsx', skiprows=99, nrows=50, usecols=[0,1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21, 22, 23, 24, 25, 26,27,28,29,30,31, 32, 33, 34]) train_output=pd.read_excel('result.xlsx', nrows=100, usecols=[0]) test_output=pd.read_excel('result.xlsx', skiprows=99, nrows=50, usecols=[0]) print(train_input.shape, test_input.shape) print(train_output.shape, test_output.shape) print(train_input)

这段代码读取了一个Excel文件,并将其划分为练集和测试集。首先,使用`pd.read_excel`函数从名为'test.xlsx'的Excel文件中读取前100行作为训练输入数据,并仅使用列索引为0到34的列。接下来,使用相同的方式读取第100行之后的50行作为测试输入数据。接着,使用`pd.read_excel`函数从名为'result.xlsx'的Excel文件中读取前100行作为训练输出数据,并仅使用列索引为0的列。最后,使用相同的方式读取第100行之后的50行作为测试输出数据。 接下来,代码打印了训练输入数据、测试输入数据、训练输出数据和测试输出数据的形状(即行数和列数),以及训练输入数据的内容。 请注意,这段代码使用了`BPNeuralNetwork`类,但是在提供的代码中没有看到该类的导入语句。如果该类定义在另一个文件中,请确保正确地导入它。

from BP import BPNeuralNetwork import numpy as np import pandas as pd # 读取 Excel 文件并划分数据集 train_input=pd.read_excel('test.xlsx', nrows=100, usecols=[1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21, 22, 23, 24, 25, 26,27,28,29,30,31, 32, 33, 34, 35]) test_input=pd.read_excel('test.xlsx', skiprows=100, nrows=50, usecols=[1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21, 22, 23, 24, 25, 26,27,28,29,30,31, 32, 33, 34, 35]) train_output=pd.read_excel('test.xlsx', nrows=100, usecols=[36]) test_output=pd.read_excel('test.xlsx', skiprows=100, nrows=50, usecols=[36]) # 构建神经网络模型并训练 nn = BPNeuralNetwork(num_input=train_input.shape[1], num_hidden=5, num_output=train_output.shape[1], learning_rate=0.1) nn.train(train_input, train_output, num_epochs=500) # 在测试集上进行预测并计算准确率 y_pred = nn.predict(test_input) y_pred_label = np.argmax(y_pred, axis=1) y_test_label = np.argmax(test_output, axis=1) accuracy = np.mean(y_pred_label == y_test_label) print("Accuracy: {:.2f}%".format(accuracy * 100))

你的代码看起来是一个基于BP神经网络的分类模型的训练和预测过程。根据你的代码,以下是你可能需要注意的几个方面: 1. 确保 `BPNeuralNetwork` 类的定义在 `BP.py` 文件中,并且在当前代码文件中通过 `from BP import BPNeuralNetwork` 导入了该类。 2. 确保你已经正确安装了所需的依赖项,例如 `pandas` 和 `numpy`。 3. 请确保文件路径 `'test.xlsx'` 是正确的,并且该文件存在于指定的位置。如果文件不在当前工作目录中,请提供正确的文件路径。 4. 检查你的 Excel 文件中的数据是否符合预期。确保训练集和测试集的输入和输出数据与模型的输入和输出维度相匹配。 5. 请确保构建神经网络模型时,输入层的维度 `num_input` 和输出层的维度 `num_output` 与数据集的输入和输出维度相匹配。 6. 确保在训练神经网络模型之前设置了适当的学习率 `learning_rate` 和训练迭代次数 `num_epochs`。 7. 确保神经网络模型训练成功后,对测试集进行预测,并计算准确率。确保预测结果 `y_pred` 和真实标签 `y_test_label` 的维度相匹配。 如果你遇到任何错误或问题,请提供完整的错误信息和数据集的结构,以便我能够更好地帮助你解决问题。
阅读全文

相关推荐

import numpy as npimport pandas as pdfrom sklearn.preprocessing import MinMaxScalerfrom keras.models import Sequentialfrom keras.layers import Dense, Dropout, LSTMdf = pd.read_csv('AAPL.csv') # 载入股票数据# 数据预处理scaler = MinMaxScaler(feature_range=(0, 1))scaled_data = scaler.fit_transform(df['Close'].values.reshape(-1, 1))# 训练集和测试集划分prediction_days = 30x_train = []y_train = []for x in range(prediction_days, len(scaled_data)): x_train.append(scaled_data[x-prediction_days:x, 0]) y_train.append(scaled_data[x, 0])x_train, y_train = np.array(x_train), np.array(y_train)x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))# 构建BP神经网络模型model = Sequential()model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)))model.add(Dropout(0.2))model.add(LSTM(units=50, return_sequences=True))model.add(Dropout(0.2))model.add(LSTM(units=50))model.add(Dropout(0.2))model.add(Dense(units=1))model.compile(optimizer='adam', loss='mean_squared_error')model.fit(x_train, y_train, epochs=25, batch_size=32)# 使用模型进行预测test_start = len(scaled_data) - prediction_daystest_data = scaled_data[test_start:, :]x_test = []for x in range(prediction_days, len(test_data)): x_test.append(test_data[x-prediction_days:x, 0])x_test = np.array(x_test)x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))predicted_price = model.predict(x_test)predicted_price = scaler.inverse_transform(predicted_price)# 可视化预测结果import matplotlib.pyplot as pltplt.plot(df['Close'].values)plt.plot(range(test_start, len(df)), predicted_price)plt.show()介绍

最新推荐

recommend-type

VB航空公司管理信息系统 (源代码+系统)(2024it).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

基于SpringBoot+Vue开发的排课管理系统设计源码

本项目为基于SpringBoot和Vue框架构建的排课管理系统源码,包含228个文件,涵盖139个Java源文件、30个JavaScript文件、24个Vue组件文件、12个PNG图片文件、7个XML配置文件、2个Git忽略文件、2个JSON文件、2个JPG图片文件、1个Markdown文档以及1个LICENSE文件。该系统分为前端Vue界面和后端SpringBoot服务,代码结构清晰,技术选型成熟,非常适合Java编程初学者和计算机专业学生学习和实践使用。
recommend-type

vb图书管理系统(论文+源代码+开题报告+外文翻译+答辩ppt)(20249q).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决