av_init_packet(&pkt); pkt.data = NULL; pkt.size = 0;

时间: 2024-05-30 22:10:32 浏览: 10
这段代码是使用FFmpeg库进行视频编解码时的一个初始化过程。具体来说,它初始化了一个AVPacket结构体,该结构体用于存储音视频数据。初始化时,先调用av_init_packet函数将其清零,然后将data和size成员变量都赋值为0或NULL。这样做是为了确保该AVPacket结构体不会包含任何旧的或者无效的数据,从而避免出现潜在的错误。
相关问题

av_init_packet(&pkt);在FFmpeg6.0中报错

在 FFmpeg 4.x 版本之前, `av_init_packet` 的定义在 `libavcodec/avcodec.h` 中,而在 FFmpeg 4.x 版本以及之后的版本中,这个函数被移动到了 `libavformat/avformat.h` 中。因此,你需要将头文件 `#include` 的位置从 `libavcodec/avcodec.h` 修改为 `libavformat/avformat.h`。 另外,如果你正在使用 FFmpeg 4.x 或更高版本,建议使用 `av_packet_alloc` 函数代替 `av_init_packet` 函数来分配和初始化 `AVPacket` 结构体,因为 `av_packet_alloc` 函数可以自动管理内存。例如: ``` AVPacket *pkt = av_packet_alloc(); if (!pkt) { // 分配内存失败 return; } // 初始化 AVPacket av_init_packet(pkt); ``` 这样就可以避免手动管理内存带来的问题。

ret = avcodec_encode_video2(pCodecCtx, &pkt, pFrame, &got_output);怎么用 avcodec_send_frame() 和 avcodec_receive_packet() 函数来改写

可以将这段代码改写成以下形式: ``` AVCodecContext *pCodecCtx; AVFrame *pFrame; // ... // 发送一帧待编码的数据 int ret = avcodec_send_frame(pCodecCtx, pFrame); if (ret < 0) { // 发送数据失败 return; } // 接收编码后的数据包 AVPacket pkt; av_init_packet(&pkt); pkt.data = NULL; pkt.size = 0; ret = avcodec_receive_packet(pCodecCtx, &pkt); if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) { // 没有数据可接收或者接收到了所有数据 return; } else if (ret < 0) { // 接收数据失败 return; } // 编码成功,pkt 中包含了编码后的数据 // 可以做其他处理或者发送数据包到网络 // ... // 释放数据包 av_packet_unref(&pkt); ``` 使用 `avcodec_send_frame()` 函数发送待编码的数据,使用 `avcodec_receive_packet()` 函数接收编码后的数据包。需要注意,这两个函数可能会阻塞等待直到数据可用或者编解码器缓冲区可用。 在上面的示例中,如果 `avcodec_receive_packet()` 返回 `AVERROR(EAGAIN)` 或者 `AVERROR_EOF`,则表示没有数据可接收或者接收到了所有数据。如果返回其他错误代码,则表示接收数据失败。而在编码成功后,需要手动调用 `av_packet_unref()` 函数释放数据包占用的内存。

相关推荐

void SerialApp_ProcessMSGCmd( afIncomingMSGPacket_t *pkt ){ uint8 stat; uint8 seqnb; uint8 delay; switch ( pkt->clusterId ) { // A message with a serial data block to be transmitted on the serial port. case SERIALAPP_CLUSTERID1: // Store the address for sending and retrying. osal_memcpy(&SerialApp_RxAddr, &(pkt->srcAddr), sizeof( afAddrType_t )); seqnb = pkt->cmd.Data[0]; // Keep message if not a repeat packet if ( (seqnb > SerialApp_RxSeq) || // Normal ((seqnb < 0x80 ) && ( SerialApp_RxSeq > 0x80)) ) // Wrap-around { // Transmit the data on the serial port. if ( HalUARTWrite( SERIAL_APP_PORT, pkt->cmd.Data+1, (pkt->cmd.DataLength-1) ) ) { // Save for next incoming message SerialApp_RxSeq = seqnb; stat = OTA_SUCCESS; } else { stat = OTA_SER_BUSY; } } else { stat = OTA_DUP_MSG; } // Select approproiate OTA flow-control delay. delay = (stat == OTA_SER_BUSY) ? SERIALAPP_NAK_DELAY : SERIALAPP_ACK_DELAY; // Build & send OTA response message. SerialApp_RspBuf[0] = stat; SerialApp_RspBuf[1] = seqnb; SerialApp_RspBuf[2] = LO_UINT16( delay ); SerialApp_RspBuf[3] = HI_UINT16( delay ); osal_set_event( SerialApp_TaskID, SERIALAPP_RESP_EVT ); osal_stop_timerEx(SerialApp_TaskID, SERIALAPP_RESP_EVT); break; // A response to a received serial data block. case SERIALAPP_CLUSTERID2: if ((pkt->cmd.Data[1] == SerialApp_TxSeq) && ((pkt->cmd.Data[0] == OTA_SUCCESS) || (pkt->cmd.Data[0] == OTA_DUP_MSG))) { SerialApp_TxLen = 0; osal_stop_timerEx(SerialApp_TaskID, SERIALAPP_SEND_EVT); } else { // Re-start timeout according to delay sent from other device. delay = BUILD_UINT16( pkt->cmd.Data[2], pkt->cmd.Data[3] ); osal_start_timerEx( SerialApp_TaskID, SERIALAPP_SEND_EVT, delay ); } break; case SERIALAPP_CONNECTREQ_CLUSTER: SerialApp_ConnectReqProcess((uint8*)pkt->cmd.Data); case SERIALAPP_CONNECTRSP_CLUSTER: SerialApp_DeviceConnectRsp((uint8*)pkt->cmd.Data); default: break; }}每行代码注释

// TODO(eladalon): Consider using packet.recovered() to avoid processing // recovered packets here. std::unique_ptrForwardErrorCorrection::ReceivedPacket FlexfecReceiver::AddReceivedPacket(const RtpPacketReceived& packet) { RTC_DCHECK_RUN_ON(&sequence_checker_); // RTP packets with a full base header (12 bytes), but without payload, // could conceivably be useful in the decoding. Therefore we check // with a non-strict inequality here. RTC_DCHECK_GE(packet.size(), kRtpHeaderSize); // Demultiplex based on SSRC, and insert into erasure code decoder. std::unique_ptrForwardErrorCorrection::ReceivedPacket received_packet( new ForwardErrorCorrection::ReceivedPacket()); received_packet->seq_num = packet.SequenceNumber(); received_packet->ssrc = packet.Ssrc(); if (received_packet->ssrc == ssrc_) { // This is a FlexFEC packet. if (packet.payload_size() < kMinFlexfecHeaderSize) { RTC_LOG(LS_WARNING) << "Truncated FlexFEC packet, discarding."; return nullptr; } received_packet->is_fec = true; ++packet_counter_.num_fec_packets; // Insert packet payload into erasure code. received_packet->pkt = rtc::scoped_refptr<ForwardErrorCorrection::Packet>( new ForwardErrorCorrection::Packet()); received_packet->pkt->data = packet.Buffer().Slice(packet.headers_size(), packet.payload_size()); } else { // This is a media packet, or a FlexFEC packet belonging to some // other FlexFEC stream. if (received_packet->ssrc != protected_media_ssrc_) { return nullptr; } received_packet->is_fec = false; // Insert entire packet into erasure code. // Create a copy and fill with zeros all mutable extensions. received_packet->pkt = rtc::scoped_refptr<ForwardErrorCorrection::Packet>( new ForwardErrorCorrection::Packet()); RtpPacketReceived packet_copy(packet); packet_copy.ZeroMutableExtensions(); received_packet->pkt->data = packet_copy.Buffer(); } ++packet_counter_.num_packets; return received_packet; } 各行意义

// TODO(eladalon): Consider using packet.recovered() to avoid processing // recovered packets here. std::unique_ptr<ForwardErrorCorrection::ReceivedPacket> FlexfecReceiver::AddReceivedPacket(const RtpPacketReceived& packet) { RTC_DCHECK_RUN_ON(&sequence_checker_); // RTP packets with a full base header (12 bytes), but without payload, // could conceivably be useful in the decoding. Therefore we check // with a non-strict inequality here. RTC_DCHECK_GE(packet.size(), kRtpHeaderSize); // Demultiplex based on SSRC, and insert into erasure code decoder. std::unique_ptr<ForwardErrorCorrection::ReceivedPacket> received_packet( new ForwardErrorCorrection::ReceivedPacket()); received_packet->seq_num = packet.SequenceNumber(); received_packet->ssrc = packet.Ssrc(); if (received_packet->ssrc == ssrc_) { // This is a FlexFEC packet. if (packet.payload_size() < kMinFlexfecHeaderSize) { RTC_LOG(LS_WARNING) << "Truncated FlexFEC packet, discarding."; return nullptr; } received_packet->is_fec = true; ++packet_counter_.num_fec_packets; // Insert packet payload into erasure code. received_packet->pkt = rtc::scoped_refptr<ForwardErrorCorrection::Packet>( new ForwardErrorCorrection::Packet()); received_packet->pkt->data = packet.Buffer().Slice(packet.headers_size(), packet.payload_size()); } else { // This is a media packet, or a FlexFEC packet belonging to some // other FlexFEC stream. if (received_packet->ssrc != protected_media_ssrc_) { return nullptr; } received_packet->is_fec = false; // Insert entire packet into erasure code. // Create a copy and fill with zeros all mutable extensions. received_packet->pkt = rtc::scoped_refptr<ForwardErrorCorrection::Packet>( new ForwardErrorCorrection::Packet()); RtpPacketReceived packet_copy(packet); packet_copy.ZeroMutableExtensions(); received_packet->pkt->data = packet_copy.Buffer(); } ++packet_counter_.num_packets; return received_packet; }

最新推荐

recommend-type

基于Java的五子棋游戏的设计(源代码+论文).zip

基于Java的五子棋游戏的设计(源代码+论文)
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC关键绩效指标详解:财务与运营效率评估

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。