ax.text(A_latitude, A_longitude, A_altitude, '车', color='blue') 加个设置字体的
时间: 2024-01-06 20:04:49 浏览: 199
好的,您可以在代码中这样修改,设置字体为宋体,字号为12:
```python
# 将A点用蓝色三角号显示出来,标注为“车”
ax.plot([A_latitude], [A_longitude], [A_altitude], marker='^', markersize=10, color='blue')
ax.text(A_latitude, A_longitude, A_altitude, '车', color='blue', fontproperties='SimSun', fontsize=12)
```
这样就可以将字体设置为宋体,字号为12了。
相关问题
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.animation import FuncAnimation plt.rcParams['font.sans-serif']=['SimHei'] # 运行配置参数中的字体(font)为黑体(SimHei) plt.rcParams['axes.unicode_minus']=False # 运行配置参数总的轴(axes)正常显示正负号(minus) # 无人机运动轨迹数据 latitudes = np.sin(np.linspace(0, 2*np.pi, 100)) longitudes = np.cos(np.linspace(0, 1*np.pi, 100)) altitudes = np.linspace(100, 500, 100) # 构建3D坐标系 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # 设置坐标轴标签和范围 ax.set_xlabel('纬度纬度纬度') ax.set_ylabel('经度经度经度') ax.set_zlabel('海拔海拔海拔') ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) ax.set_zlim(min(altitudes), max(altitudes)) # 让用户输入A点的经纬度数据 A_latitude, A_longitude = float(input("请输入A点的纬度: ")), float(input("请输入A点的经度: ")) A_altitude = float(input("请输入A点的海拔: ")) # 将A点用蓝色三角号显示出来 ax.plot([A_latitude], [A_longitude], [A_altitude], marker='^', markersize=10, color='blue') # 定义绘制函数 def update(frame): ax.plot(latitudes[:frame+1], longitudes[:frame+1], altitudes[:frame+1], c='b') # 添加连线 ax.scatter(latitudes[frame], longitudes[frame], altitudes[frame], c='r') # 保留散点 return [line for line in ax.artists] # 返回所有绘制对象,以便更新时重新绘制它们 # 创建动画,加快一倍速度 ani = FuncAnimation(fig, update, frames=len(latitudes), interval=500) # 显示动画 plt.show()给这段代码A点加一个标注为:车
好的,您可以在代码中这样修改:
```python
# 将A点用蓝色三角号显示出来,标注为“车”
ax.plot([A_latitude], [A_longitude], [A_altitude], marker='^', markersize=10, color='blue')
ax.text(A_latitude, A_longitude, A_altitude, '车', color='blue')
```
这样就可以在A点处添加一个标注“车”了。
优化这个代码import xarray as xr import netCDF4 as nc import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import cartopy.mpl.ticker as cticker import cartopy.crs as ccrs import cartopy.feature as cfeature ds = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc', engine='netcdf4') # 读取原始数据 ds_temp = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc') # 区域提取* south_asia = ds_temp.sel(latitude=slice(38, 28), longitude=slice(75, 103)) indian_ocean = ds_temp.sel(latitude=slice(5, -15), longitude=slice(60, 100)) # 高度插值 south_asia_200hpa = south_asia.t.interp(level=200) indian_ocean_200hpa = indian_ocean.t.interp(level=200) south_asia_400hpa = south_asia.t.interp(level=400) indian_ocean_400hpa = indian_ocean.t.interp(level=400) # 区域平均 TTP = south_asia_400hpa.mean(dim=('latitude', 'longitude'))#.values TTIO = indian_ocean_400hpa.mean(dim=('latitude', 'longitude'))# TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude')) TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude')) tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815) # 定义画图区域和投影方式 fig = plt.figure(figsize=[10, 8]) ax = plt.axes(projection=ccrs.PlateCarree()) # 添加地图特征 ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5) ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray') ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white') # 画距平场 im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both') # 添加色标 cbar = plt.colorbar(im, ax=ax, shrink=0.8) cbar.set_label('Temperature anomaly (°C)') # 添加经纬度坐标轴标签 ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree()) ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree()) lon_formatter = cticker.LongitudeFormatter() lat_formatter = cticker.LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) # 添加标题和保存图片 plt.title('Temperature anomaly at 400hPa over South Asia and the Indian Ocean') plt.savefig('temperature_anomaly.png', dpi=300) plt.show()
1. 首先,可以将多个导入语句合并为一行,以提高代码的可读性。例如:
```
import xarray as xr, netCDF4 as nc, pandas as pd, numpy as np, datetime
import matplotlib.pyplot as plt
import cartopy.mpl.ticker as cticker, cartopy.crs as ccrs, cartopy.feature as cfeature
```
2. 可以在代码中删除不必要的变量,例如 `ds` 和 `ds_temp` 都是指向同一个文件的数据集,因此只需要保留一个即可。
3. 对于数据集的区域提取和高度插值操作,可以将它们合并成一个链式操作,以减少代码行数。例如:
```
south_asia = ds.sel(latitude=slice(38, 28), longitude=slice(75, 103)).t.interp(level=200)
indian_ocean = ds.sel(latitude=slice(5, -15), longitude=slice(60, 100)).t.interp(level=200)
```
4. 对于计算平均值的操作,可以使用 `reduce` 函数,以减少代码行数。例如:
```
TTP, TTIO = np.array([south_asia_400hpa, indian_ocean_400hpa]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0)
TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude'))
```
5. 可以将一些常量定义为全局变量或者类变量,以方便后续使用。例如:
```
LEVEL = 400
SLICE_LATITUDE = slice(38, 28)
SLICE_LONGITUDE = slice(75, 103)
SLICE_IO_LATITUDE = slice(5, -15)
SLICE_IO_LONGITUDE = slice(60, 100)
TITLE = 'Temperature anomaly at {}hPa over South Asia and the Indian Ocean'.format(LEVEL)
```
6. 可以将绘图的代码封装为一个函数,以提高代码的可读性和复用性。例如:
```
def plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup):
fig = plt.figure(figsize=[10, 8])
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree())
ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5)
ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray')
ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white')
im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both')
cbar = plt.colorbar(im, ax=ax, shrink=0.8)
cbar.set_label('Temperature anomaly (°C)')
ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree())
ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree())
lon_formatter = cticker.LongitudeFormatter()
lat_formatter = cticker.LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)
plt.title(TITLE)
plt.savefig('temperature_anomaly.png', dpi=300)
plt.show()
```
7. 最后,可以将所有操作封装为一个函数,以方便调用。例如:
```
def calculate_and_plot_temperature_anomaly(filename):
ds = xr.open_dataset(filename)
south_asia = ds.sel(latitude=SLICE_LATITUDE, longitude=SLICE_LONGITUDE).t.interp(level=LEVEL)
indian_ocean = ds.sel(latitude=SLICE_IO_LATITUDE, longitude=SLICE_IO_LONGITUDE).t.interp(level=LEVEL)
south_asia_200hpa = south_asia.t.interp(level=200)
indian_ocean_200hpa = indian_ocean.t.interp(level=200)
TTP, TTIO = np.array([south_asia, indian_ocean]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0)
TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude'))
TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude'))
tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815)
plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup)
```
这样,我们就可以通过调用 `calculate_and_plot_temperature_anomaly(filename)` 函数来计算和绘制温度距平图了。
阅读全文