快速排序算法为什么左侧是start,i-1

时间: 2023-07-24 07:14:28 浏览: 59
快速排序算法中,左侧是start,i-1的原因是因为我们选择一个基准值(pivot)作为比较的标准,将数组分为两部分,一部分是小于等于基准值的元素,另一部分是大于基准值的元素。我们需要在这两个部分中分别进行递归排序。 在每次递归中,我们需要将数组分成两部分,左侧部分是小于等于基准值的元素,右侧部分是大于基准值的元素。我们从左侧的 start 开始向右依次比较元素大小,如果该元素小于等于基准值,则将其与 i 位置的元素交换,并将 i 加一。这样,i 左侧的元素都是小于等于基准值的,i 右侧的元素都是大于基准值的。 最后,我们将基准值与 i 位置的元素交换,这样,基准值就位于整个数组的中间位置,左侧是小于等于它的元素,右侧是大于它的元素。然后,我们分别对左侧和右侧进行递归排序。因此,在每次递归中,左侧部分的起始位置是 start,右侧部分的起始位置是 i。
相关问题

舍伍德随机快速排序算法编程实验

舍伍德随机快速排序算法是一种基于快速排序的改进算法,它通过随机选择枢轴元素来提高排序的效率和稳定性。下面是舍伍德随机快速排序算法的编程实验介绍: 1. 首先,我们需要定义一个函数来实现舍伍德随机快速排序算法。函数的输入参数包括待排序数组和数组的起始位置和结束位置。 2. 在函数内部,我们首先需要判断起始位置是否小于结束位置,如果不是,则直接返回。 3. 接下来,我们需要选择一个随机的枢轴元素。可以使用随机数生成器来生成一个在起始位置和结束位置之间的随机索引,然后将对应的元素作为枢轴元素。 4. 将枢轴元素与数组的最后一个元素进行交换,这样可以方便地将枢轴元素放在正确的位置上。 5. 接下来,我们需要遍历数组,将小于枢轴元素的元素放在左边,大于枢轴元素的元素放在右边。可以使用两个指针,一个指向左边的起始位置,一个指向右边的起始位置。 6. 当左指针小于右指针时,我们需要进行以下操作: - 从左边开始找到第一个大于枢轴元素的元素,将其与右指针指向的元素进行交换。 - 从右边开始找到第一个小于枢轴元素的元素,将其与左指针指向的元素进行交换。 7. 重复步骤6,直到左指针大于等于右指针。 8. 将枢轴元素放在正确的位置上,即将其与左指针指向的元素进行交换。 9. 现在,枢轴元素左边的元素都小于它,右边的元素都大于它。我们可以递归地对左右两个子数组进行排序。 10. 最后,我们可以通过递归调用舍伍德随机快速排序函数来完成整个排序过程。 下面是一个示例的舍伍德随机快速排序算法的实现: ```python import random def shuffle_quick_sort(arr, start, end): if start < end: pivot_index = random.randint(start, end) arr[pivot_index], arr[end] = arr[end], arr[pivot_index] pivot = arr[end] i = start - 1 for j in range(start, end): if arr[j] < pivot: i += 1 arr[i], arr[j] = arr[j], arr[i] arr[i+1], arr[end] = arr[end], arr[i+1] pivot_index = i + 1 shuffle_quick_sort(arr, start, pivot_index - 1) shuffle_quick_sort(arr, pivot_index + 1, end) # 测试 arr = [5, 2, 9, 1, 7, 6, 3] shuffle_quick_sort(arr, 0, len(arr) - 1) print(arr) ```

C语言写个快速排序算法

### 回答1: 按照快速排序算法,C语言实现的程序如下: void quick_sort(int *arr, int start, int end) { if (start >= end) //如果只有一个元素,就不用再排下去了 return; int mid = arr[end]; //取最后一个元素作为基准 int left = start, right = end - 1; while (left < right) { while (arr[left] < mid && left < right) left++; while (arr[right] >= mid && left < right) right--; if (left < right) swap(arr[left],arr[right]); } //基准归位 if (arr[left] >= arr[end]) swap(arr[left], arr[end]); else left++; if (left) quick_sort(arr, start, left - 1); quick_sort(arr, left + 1, end); } ### 回答2: 快速排序是一种高效的排序算法,可以通过递归地将数组划分为较小和较大的两部分来排序。其基本思想是选择一个基准元素,将数组划分为两个子数组,其中一个子数组的所有元素均小于基准元素,另一个子数组的所有元素均大于基准元素,然后对这两个子数组递归地应用快速排序。 下面是使用C语言编写的快速排序算法的实现代码: ```c #include<stdio.h> void swap(int* a, int* b) { int t = *a; *a = *b; *b = t; } int partition(int arr[], int low, int high) { int pivot = arr[high]; int i = (low - 1); for (int j = low; j <= high- 1; j++) { if (arr[j] < pivot) { i++; swap(&arr[i], &arr[j]); } } swap(&arr[i + 1], &arr[high]); return (i + 1); } void quickSort(int arr[], int low, int high) { if (low < high) { int pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } void printArray(int arr[], int size) { for (int i=0; i < size; i++) { printf("%d ", arr[i]); } printf("\n"); } int main() { int arr[] = {10, 7, 8, 9, 1, 5}; int n = sizeof(arr)/sizeof(arr[0]); printf("原始数组:"); printArray(arr, n); quickSort(arr, 0, n-1); printf("排序后的数组:"); printArray(arr, n); return 0; } ``` 这段代码首先定义了一个swap函数用于交换数组中的两个元素,然后定义了一个partition函数用于将数组划分为较小和较大的两部分,并返回基准元素的索引。接下来,定义了一个quickSort函数用于递归地对划分后的子数组进行排序。最后,在main函数中声明了一个待排序的数组,并调用quickSort函数对其进行排序。 ### 回答3: 快速排序算法是一种常用的排序算法,它通过分治的思想将一个数组分成两个相互独立的子数组,然后分别对这两个子数组进行快速排序,最后将这两个子数组合并起来得到有序的数组。 快速排序算法的基本思想是选取一个元素作为基准(一般选择数组的第一个元素),将数组中比基准小的元素放在基准的左边,比基准大的元素放在基准的右边。然后对基准左边的子数组和右边的子数组分别进行递归调用快速排序算法。 下面是用C语言实现的快速排序算法: ```c #include <stdio.h> // 交换数组中两个元素的位置 void swap(int *a, int *b) { int temp = *a; *a = *b; *b = temp; } // 快速排序算法 void quickSort(int arr[], int low, int high) { if (low < high) { int pivot = arr[low]; // 选择第一个元素作为基准 int i = low, j = high; while (i < j) { // 从右向左查找第一个小于基准的元素 while (i < j && arr[j] >= pivot) { j--; } if (i < j) { swap(&arr[i], &arr[j]); } // 从左向右查找第一个大于基准的元素 while (i < j && arr[i] <= pivot) { i++; } if (i < j) { swap(&arr[i], &arr[j]); } } // 递归调用快速排序算法 quickSort(arr, low, i - 1); quickSort(arr, i + 1, high); } } int main() { int arr[] = {5, 2, 7, 3, 9, 4, 1, 6, 8}; int n = sizeof(arr) / sizeof(arr[0]); quickSort(arr, 0, n - 1); printf("排序后的数组:"); for (int i = 0; i < n; i++) { printf("%d ", arr[i]); } return 0; } ``` 以上是一个基本的快速排序算法的C语言实现。使用该算法可以对任意长度的整型数组进行快速排序,并得到一个有序的数组。

相关推荐

最新推荐

recommend-type

基于stm32f4系列单片机,ad7606的8通道16位的同步ADC例程。.zip

基于stm32f4系列单片机,ad7606的8通道16位的同步ADC例程。
recommend-type

六数码问题..._lan.zip

六数码问题..._lan
recommend-type

ASP.NET旅游信息管理系统 asp.net(c#)+sql.zip

ASP.NET旅游信息管理系统 asp.net(c#)+sql
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例

![MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例](https://img-blog.csdnimg.cn/img_convert/007dbf114cd10afca3ca66b45196c658.png) # 1. MATLAB矩阵方程求解理论基础** MATLAB中矩阵方程求解是数值分析中一个重要的课题。矩阵方程的形式一般为`Ax = b`,其中`A`是一个系数矩阵,`x`是未知向量,`b`是常数向量。求解矩阵方程的方法有很多,包括直接求解法和迭代求解法。 直接求解法通过对系数矩阵`A`进行分解,将矩阵方程转化为求解三角形方程组或线性方程组,从而得到未知向量`x`。常见