布林带策略mindgo代码
时间: 2023-07-09 16:29:57 浏览: 182
以下是一个基于布林带的简单交易策略的Mindgo代码示例:
```
// 读取股票历史数据
var df = DataSource("stock_data.csv").Read()
// 计算布林带指标
function calculate_bollinger_bands(data, window_size, num_std) {
var rolling_mean = data["Close"].Rolling(window_size).Mean()
var rolling_std = data["Close"].Rolling(window_size).Std()
var upper_band = rolling_mean + (rolling_std * num_std)
var lower_band = rolling_mean - (rolling_std * num_std)
return [rolling_mean, upper_band, lower_band]
}
// 计算20天的布林带指标
var window_size = 20
var num_std = 2
var bands = calculate_bollinger_bands(df, window_size, num_std)
var rolling_mean = bands[0]
var upper_band = bands[1]
var lower_band = bands[2]
// 将指标数据添加到原始数据中
df["Rolling Mean"] = rolling_mean
df["Upper Band"] = upper_band
df["Lower Band"] = lower_band
// 策略:当价格从下轨突破到中轨时买入,当价格从上轨突破到中轨时卖出
df["Position"] = None
for (var i = window_size; i < df.Rows.Count; i++) {
if (df["Close"][i] > df["Lower Band"][i]) {
df["Position"][i] = 1
} else if (df["Close"][i] < df["Upper Band"][i]) {
df["Position"][i] = -1
}
}
// 计算收益率
df["Returns"] = Log(df["Close"] / df["Close"].Shift(1))
df["Strategy Returns"] = df["Position"].Shift(1) * df["Returns"]
// 绘制收益率曲线
df[["Returns", "Strategy Returns"]].CumSum().Apply(Exp).Plot(Title="Bollinger Bands Strategy")
// 显示图表
ShowPlot()
```
请注意,Mindgo代码与Python代码有些许不同,但思路和代码逻辑基本相同。
阅读全文