loss_function=torch.nn.CrossEntropyLoss正则化代码
时间: 2023-12-25 08:02:46 浏览: 133
在PyTorch中,可以使用weight_decay参数来实现L2正则化。同时,由于CrossEntropyLoss已经包含了Softmax操作,因此不需要在模型中额外添加Softmax层。
下面是一个使用CrossEntropyLoss和L2正则化的例子:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义模型
class MyModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义超参数
input_size = 10
hidden_size = 20
output_size = 5
learning_rate = 0.01
weight_decay = 0.001
epochs = 10
# 创建模型和优化器
model = MyModel(input_size, hidden_size, output_size)
optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
loss_fn = nn.CrossEntropyLoss()
# 准备数据
X = torch.randn(100, input_size)
y = torch.randint(0, output_size, (100,))
# 训练模型
for epoch in range(epochs):
# 前向传播和计算损失
logits = model(X)
loss = loss_fn(logits, y)
# 反向传播和更新参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 打印训练信息
if epoch % 1 == 0:
print("Epoch [{}/{}], Loss: {:.4f}".format(epoch+1, epochs, loss.item()))
```
在这个例子中,我们将L2正则化的超参数设为0.001,即weight_decay=0.001。在优化器中使用weight_decay参数即可实现L2正则化。
阅读全文