H ( b > g )=2* pi - H ( b > g ); H = H /(2* pi );这句matlab 代码是什么意思

时间: 2023-06-23 19:08:36 浏览: 109
HTM

用matlab表示霍夫码编码

这段 MATLAB 代码的含义是: - 给定一个实数变量 `b` 和另一个实数变量 `g`,计算 `H(b > g)` 的值。 - 如果 `b > g`,则 `H(b > g) = 2 * pi - H(b > g)`,其中 `pi` 是圆周率。 - 最后将 `H` 的值除以 `2 * pi`。 这段代码的具体实现可能取决于在哪个上下文中使用它。
阅读全文

相关推荐

%1.已知参数 clear; r0 =30; %基圆半径 rr=8; %滚子半径 phi_H=15; %滚子摆动最角 a=45; %OA 的长度 l=58; %AB 的长度 Delta1=180; %推程角度 Delta2=180; %回程角度 hd= pi/180;du=180/pi; %弧度与角度的转换 phi0=acos((a*a+1*1-r0*r0)/(2*a*1));%初始化角度 %2.凸轮曲线设计 n=360; for n1=1:n %计算推杆运动规律 if n1<=Delta1 %推程阶段 q(nl)=phi_H*(1-cos(pi*nl/Deltal))/2;q=q(nl); dq(nl)=(phi_H*pi/(2*Deltal*hd))*sin(pi*n1/Deltal);dq=dq(nl); elseif n1>=Delta1&n1<n %回程阶段 q(n1)=phi_H*(1-(( n1- Delta1)/ Delta2)+ sin(2* pi*( n1- Delta1)/ Delta2)/(2*pi)); q=q(nl); dq( n1)= phi_H*(-1/(Delta2*hd)+( cos(2*pi*( n1- Delta1)/Delta2))/(Delta2*hd)); dq=dq(n1); end %计算凸轮轨迹曲线 xx(nl)=a*sin(n1*hd)-1*sin(n1*hd+phi0+q*hd); x=xx(n1);%理论轮廓曲线 yy(n1)=a*cos(n1*hd)-1*cos(n1*hd+phi0+q*hd); y=yy(n1); dx(n1) =a * cos( n1* hd) - 1 *( 1 + dq * hd ) * cos( n1* hd+q*hd+phi0) ;dx =dx( n1) ; dy(n1)=-a*rr*dy/sqrt(dx^2+dy^2);xxp=xp(n1); xp(n1)=x-rr*dy/sqrt(dx^2+dy^2);xxp=xp(n1); %实际轮廓曲线 yp(n1)=y+rr*dx/sqrt(dx^2+dy^2);yyp=yp(n1); end %3.输出凸轮轮廓曲线 figure(3); hold on;grid on;axis equal; axis( [-60 80 -60 80]); text( r0 + 27 + 3,4,'X ') ; text( 3,r0+35+3,'Y'); text ( -6,-4,'O') ; title('摆动滚子推杆盘形凸轮设计'); plot ( [ - ( r0+25) ( r0+30)] ,[0 0] ,'k') ; plot ( [0 0] ,[ - ( r0+60) ( r0+50)] ,'k') ; plot( [0 -1*sin( phi0)] ,[a a-1*cos( phi0)],'k') ; plot(0,a,'o'); plot(-1*sin(phi0),a-1*cos(phi0),'o'); plot( xx, yy,'m- '); %理论轮廓曲线 ct=linspace(0,2*pi); plot(r0*cos(ct),r0*sin(ct),'g');%基圆 plot(-1*sin(phi0)+rr*cos(ct),a-1*cos(phi0)+rr*sin(ct),'k');%滚子圆 plot( xp, yp,'b- '); %实际轮廓曲线 xlabel('xmm') ylabel('ymm')的问题

优化以下代码% 设置参数 t = 0.03; % 时间范围,计算到0.03秒 x = 1; y = 1; % 空间范围,0-1米 m = 320; % 时间t方向分320个格子 n = 32; % 空间x方向分32个格子 k = 32; % 空间y方向分32个格子 ht = t / (m - 1); % 时间步长dt hx = x / (n - 1); % 空间步长dx hy = y / (k - 1); % 空间步长dy hx2 = hx^2; hy2 = hy^2; % 初始化矩阵 u = zeros(m, n, k); % 设置边界 [x, y] = meshgrid(0:hx:1, 0:hy:1); u(1, :, :) = sin(4 * pi * x) + cos(4 * pi * y); % 按照公式进行差分 for ii = 1 : m - 1 u_prev = u(ii, :, :); u_next = u_prev; for kk = 2 : k - 1 u_prev_k = u_prev(:, kk); u_next_k = u_next(:, kk); u_prev_kk_1 = u_prev(:, kk + 1); u_prev_kk_1(1) = u_prev_k(1); u_prev_kk_1(end) = u_prev_k(end); u_prev_kk_2 = u_prev(:, kk - 1); u_prev_kk_2(1) = u_prev_k(1); u_prev_kk_2(end) = u_prev_k(end); A = diag(ones(n - 3, 1), 1) - 2 * diag(ones(n - 2, 1)) + diag(ones(n - 3, 1), -1); B = diag(ones(n - 3, 1), 1) + diag(ones(n - 3, 1), -1) + 2 * diag(ones(n - 2, 1)); C = diag(ones(n - 3, 1), 1) - 2 * diag(ones(n - 2, 1)) + diag(ones(n - 3, 1), -1); D = u_prev_kk_1 / hy2; E = u_prev_kk_2 / hy2; F = u_prev_k / hx2 + 1 / ht; G = u_prev_k / hx2 - 1 / ht; H = u_prev_kk_1 / hy2 + u_prev_kk_2 / hy2 + 1 / ht; I = u_prev_kk_1 / hy2 + u_prev_kk_2 / hy2 - 1 / ht; K = B - ht * F; L = B + ht * G; M = A + ht * D; N = C - ht * E; u_next(:, 2 : end - 1, kk) = thomas(K, M, N, H); u_next(:, 2 : end - 1, kk) = thomas(L, N, M, I); end u(ii + 1, :, :) = u_next; end % 绘制图像 parfor i = 1 : m figure(1); mesh(x, y, reshape(u(i, :, :), [n k])); axis([0 1 0 1 -2 2]); end % Thomas 算法求解三对角线性方程组 function x = thomas(A, B, C, D) n = length(D); for k = 2 : n m = A(k) / B(k - 1); B(k) = B(k) - m * C(k - 1); D(k) = D(k) - m * D(k - 1); end x(n) = D(n) / B(n); for k = n - 1 : -1 : 1 x(k) = (D(k) - C(k) * x(k + 1)) / B(k); end end

clear,clc; val=importdata('Ecg.txt'); signal=val(1,1:1800); fs=500; figure(1) subplot(4,2,1); plot(signal); title('干净的EGC信号'); xlabel('采样点'); ylabel('幅值(dB)'); grid on; signal1=awgn(signal,10,'measured'); subplot(4,2,2); plot(signal1); title('高斯噪声的EGC信号'); xlabel('采样点'); ylabel('幅值(dB)'); % 设计IIR低通滤波器 Wp = 0.1*pi; % 通带截止频率 Ws = 0.16*pi; % 阻带截止频率 Rp = 1; % 通带衰减 Rs = 15; % 阻带衰减 [n, Wn] = buttord(Wp, Ws, Rp, Rs, 's'); [b, a] = butter(n, Wn); % 绘制数字低通滤波器的幅频响应 [H, w] = freqz(b, a, 512); f = w/pi*500; subplot(4,2,3); plot(w/pi,20*log10(abs(H))); xlabel('频率'); ylabel('幅值(dB)'); title('IIR低通滤波器幅频响应'); iir_filtered_signal = filter(b, a, signal1); subplot(4,2,4); plot(iir_filtered_signal); xlabel('频率'); ylabel('幅值(dB)'); title('IIR低通滤波后的含高斯噪声的图像'); iir_signal = abs(fft(signal)); subplot(4,2,5); plot(20*log10(abs(iir_signal))); xlabel('频率'); ylabel('幅值(dB)'); title('含高斯噪声的频谱'); iir_signal1 = abs(fft(signal1)); subplot(4,2,6); plot(20*log10(abs(iir_signal1))); xlabel('频率'); ylabel('幅值(dB)'); title('IIR低通滤波后的含高斯噪声的频谱'); n = 80; % 滤波器阶数 wc = 0.1*pi; % 通带截止频率 h = fir1(n, wc/(fs/2), kaiser(n+1, 6)); % 计算FIR低通滤波器系数 filtered_signal_fir = filter(h, 1, signal); % 应用FIR滤波器 subplot(4,2,7); plot(20*log10(abs(h))); title('FIR低通滤波幅频响应'); xlabel('频率'); ylabel('幅值(dB)'); [Pxx_filtered_fir, f_filtered_fir] = periodogram(filtered_signal_fir, [], [], fs); subplot(4,2,8); plot(20*log10(abs(Pxx_filtered_fir))); title('FIR低通滤波后的含高斯噪声的频谱'); xlabel('频率'); ylabel('幅值(dB)');注释这段代码

#define _USE_MATH_DEFINES #include <cstdlib> #include <cmath> #include <iostream> #include <GL/glew.h> #include <GL/freeglut.h> // Globals. static float R = 40.0; // Radius of circle. static float X = 50.0; // X-coordinate of center of circle. static float Y = 50.0; // Y-coordinate of center of circle. static const int numVertices = 50; // Number of vertices on circle. static int verticesColors[6 * numVertices]; void generateVertices() { float t = 0; // Angle parameter. for (int i = 0; i < 6*numVertices; i+=6) { verticesColors[] = X + R * cos(t); //x verticesColors[] = Y + R * sin(t); //y verticesColors[] = 0.0; //z verticesColors[] = 1.0; //r verticesColors[] = 0.0; //g verticesColors[] = 0.0; //b t += 2 * M_PI / numVertices; //angle } } // Drawing routine. void drawScene(void) { glClear(GL_COLOR_BUFFER_BIT); glColor3f(1, 0, 0); glLineWidth(5); glDrawArrays(GL_LINE_LOOP, 0, 50); glFlush(); } // Initialization routine. void setup(void) { glClearColor(1.0, 1.0, 1.0, 0.0); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_COLOR_ARRAY); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), &verticesColors[0]); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), &verticesColors[3]) } // OpenGL window reshape routine. void resize(int w, int h) { glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } // Keyboard input processing routine. void keyInput(unsigned char key, int x, int y) { switch (key) { case 27: exit(0); break; default: break; } } // Main routine. int main(int argc, char** argv) { generateVertices(); glutInit(&argc, argv); glutInitContextVersion(4, 3); glutInitContextProfile(GLUT_COMPATIBILITY_PROFILE); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA); glutInitWindowSize(500, 500); glutInitWindowPosition(100, 100); glutCreateWindow("circle.cpp"); glutDisplayFunc(drawScene); glutReshapeFunc(resize); glutKeyboardFunc(keyInput); glewExperimental = GL_TRUE; glewInit(); setup(); glutMainLoop(); }怎么修改

最新推荐

recommend-type

用Python编程实现控制台爱心形状绘制技术教程

内容概要:本文档主要讲解了使用不同编程语言在控制台绘制爱心图形的方法,特别提供了Python语言的具体实现代码。其中包括了一个具体的函数 draw_heart() 实现,使用特定规则在控制台上输出由星号组成的心形图案,代码展示了基本的条件判断以及字符打印操作。 适合人群:对编程有兴趣的学生或者初学者,特别是想要学习控制台图形输出技巧的人。 使用场景及目标:适合作为编程入门级练习,帮助学生加深对于控制流、字符串处理及图形化输出的理解。也可以作为一个简单有趣的项目用来表达情感。 阅读建议:建议读者尝试动手运行并修改代码,改变输出图形的颜色、大小等特性,从而提高对Python基础语法的掌握程度。
recommend-type

优选驾考小程序 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程.zip

优选驾考小程序 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程 项目启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS
recommend-type

【国信期货-2024研报】宏观2025年投资策略报告:经济结构性矛盾现拐点 2025年注重破局.pdf

研究报告
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自