请写一段代码使用TCN根据风速、风向、温度、湿度、气压、空气密度数据预测风电场输出功率
时间: 2023-09-30 11:03:43 浏览: 102
很高兴回答您的问题,以下是使用TCN模型进行风电场输出功率预测代码示例:
``` python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Conv1D, MaxPooling1D, GlobalMaxPooling1D
from keras.layers import InputLayer
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# Load data
data = np.load('wind_power_data.npy')
x = data[:, :6] # input features: 风速、风向、温度、湿度、气压、空气密度
y = data[:, -1] # output: 风电场输出功率
# Normalize features
scaler = StandardScaler()
x = scaler.fit_transform(x)
# Split data into train and test sets
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, shuffle=True, random_state=123)
# Define TCN model architecture
input_shape = (x_train.shape[1],)
model = Sequential([
InputLayer(input_shape=input_shape),
Conv1D(filters=32, kernel_size=3, activation='relu', padding='same'),
MaxPooling1D(pool_size=2),
Conv1D(filters=64, kernel_size=3, activation='relu', padding='same'),
MaxPooling1D(pool_size=2),
GlobalMaxPooling1D(),
Dropout(0.5),
Dense(1)
])
# Compile model for training
model.compile(loss='mse', optimizer=Adam(lr=0.01), metrics=['mae'])
# Define early stopping callback
early_stop = EarlyStopping(monitor='val_loss', patience=5, verbose=1, restore_best_weights=True)
# Train model
history = model.fit(x_train, y_train, batch_size=32, epochs=50, validation_data=(x_test, y_test),
callbacks=[early_stop], verbose=2)
# Evaluate model on test set
test_loss, test_mae = model.evaluate(x_test, y_test, verbose=0)
print(f'Test loss: {test_loss:.4f}, Test MAE: {test_mae:.4f}')
# Make predictions on new data
new_data = [[10, 12, 20, 80, 101, 1.2], [7, 140, 18, 65, 99, 1.3]]
new_data = scaler.transform(new_data)
predictions = model.predict(new_data)
print(f'Predictions on new data: {predictions}')
```
该代码通过使用 TCN 模型处理输入数据,并训练用于预测风电场输出功率的神经网络。它使用了标准化操作将输入数据进行规范化,使用了验证数据和早期停止技术进行训练和评估。
注意:此示例代码仅供参考,实际应用中需要根据数据和问题进行修改和调整。
阅读全文