请写一段代码使用TCN构建预测模型对风电输出功率进行预测
时间: 2024-05-15 21:14:34 浏览: 164
基于TCN的风电功率预测研究(Matlab代码实现)
好的,以下是使用TCN构建预测模型对风电输出功率进行预测的代码示例:
```
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras.layers import Dense, Input, Conv1D, Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
# 加载数据
data = pd.read_csv("wind_power.csv")
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
# 构建TCN模型
inputs = Input(shape=(X.shape[1], 1))
x = Conv1D(64, 2, activation='relu')(inputs)
x = Dropout(0.2)(x)
x = Conv1D(64, 2, activation='relu')(x)
x = Dropout(0.2)(x)
x = Conv1D(64, 2, activation='relu')(x)
x = Dropout(0.2)(x)
x = Conv1D(64, 2, activation='relu')(x)
x = Dropout(0.2)(x)
x = Conv1D(64, 2, activation='relu')(x)
x = Dropout(0.2)(x)
x = Dense(64)(x)
outputs = Dense(1)(x)
model = Model(inputs, outputs)
model.compile(optimizer=Adam(lr=0.001), loss='mse')
# 训练模型
X = np.reshape(X, (X.shape[0], X.shape[1], 1))
model.fit(X, y, epochs=100, batch_size=32)
# 进行预测
new_X = np.random.rand(1, X.shape[1], 1)
prediction = model.predict(new_X)
print("预测结果:", prediction)
```
这段代码中,我们使用了TCN(Temporal Convolutional Network)构建预测模型,输入数据的形状为(样本数,时间步长,特征数)。
首先,我们加载风电输出功率的数据,并对其进行预处理。然后,我们构建了一个具有多层卷积和全连接层的TCN模型,并使用均方误差作为损失函数进行训练。最后,我们使用训练好的模型对新数据进行预测。
阅读全文