for i in range(data_test.shape[0]): NameError: name 'data_test' is not defined
时间: 2024-05-02 07:17:11 浏览: 139
这个错误提示意味着在此之前没有定义名为`data_test`的变量。你需要先定义`data_test`变量并赋值,然后才能在这里使用它。例如:
```python
data_test = [1, 2, 3, 4, 5]
for i in range(len(data_test)):
print(data_test[i])
```
在这个示例中,我们定义了一个名为`data_test`的列表,然后使用`range`函数和`len`函数来迭代列表中的元素。
相关问题
import cv2 import numpy as np # 提取图像的HOG特征 def get_hog_features(image): hog = cv2.HOGDescriptor() hog_features = hog.compute(image) return hog_features # 加载训练数据集 train_data = [r"I:\18Breakageratecalculation\SVM run\detection_cut\whole\train128"] train_labels = [r"I:\18Breakageratecalculation\SVM run\detection_cut\whole\train128\labels.txt"] for i in range(num_samples): image = cv2.imread('image_'+str(i)+'.jpg', 0) hog_features = get_hog_features(image) hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) color_hist = cv2.calcHist([hsv_image], [0, 1], None, [180, 256], [0, 180, 0, 256]) color_features = cv2.normalize(color_hist, color_hist).flatten() train_data.append(hog_features) train_labels.append(labels[i]) # 训练SVM模型 svm = cv2.ml.SVM_create() svm.setType(cv2.ml.SVM_C_SVC) svm.setKernel(cv2.ml.SVM_LINEAR) svm.train(np.array(train_data), cv2.ml.ROW_SAMPLE, np.array(train_labels)) # 对测试图像进行分类 test_image = cv2.imread('I:\18Breakageratecalculation\mask-slic use\maskSLIC-master\result\split\result2\maskslic2_roi.png', 0) test_features = get_hog_features(test_image) result = svm.predict(test_features.reshape(1,-1)) # 显示分割结果 result_image = np.zeros(test_image.shape, np.uint8) for i in range(test_image.shape[0]): for j in range(test_image.shape[1]): if result[i,j] == 1: result_image[i,j] = 255 cv2.imshow('I:\18Breakageratecalculation\mask-slic use\maskSLIC-master\result\split\result2\Result.png', result_image) cv2.waitKey(0) cv2.destroyAllWindows()
这段代码中也没有定义`num_samples`这个变量,所以在执行`for i in range(num_samples):`这个循环时,会报错`NameError: name 'num_samples' is not defined`。你需要在代码中定义并赋值`num_samples`这个变量,例如:`num_samples = 10`。然后你需要检查循环的范围是否正确,确保它不会超过你的数据集中的图像数量。
代码错误:Traceback (most recent call last): File "C:\Users\ye\PycharmProjects\pythonProject\main.py", line 60, in <module> train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) NameError: name 'ImageDataGenerator' is not defined请写出修改后的完整代码
这个错误提示说明您的代码中没有导入`ImageDataGenerator`类,需要先从`tensorflow.keras.preprocessing.image`模块中导入该类才能使用。以下是修改后的代码:
```python
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# 加载数据集
train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
train_generator = train_datagen.flow_from_directory('dataset/train', target_size=(224, 224), batch_size=32, class_mode='binary')
test_datagen = ImageDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_directory('dataset/test', target_size=(224, 224), batch_size=32, class_mode='binary')
# 定义模型
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(1, activation='sigmoid')
])
# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(train_generator, steps_per_epoch=len(train_generator), epochs=50, validation_data=test_generator, validation_steps=len(test_generator))
```
在这个代码中,我们从`tensorflow.keras.preprocessing.image`模块中导入了`ImageDataGenerator`类,并使用它来加载数据集。同时,我们还修改了模型的定义方式,使用了`tf.keras.models.Sequential`类来构建模型。最后,我们使用`model.fit()`方法进行模型训练。
阅读全文