IF (ASSOCIATED(partlist%head%prev) .AND. partlist%safe) & test_partlist = IOR(test_partlist, 1) IF (ASSOCIATED(partlist%tail%next) .AND. partlist%safe) & test_partlist = IOR(test_partlist, 2)
时间: 2024-02-26 16:55:55 浏览: 139
这段代码是什么意思?
这段代码是Fortran语言中的代码。它的作用是用于检查一个双向链表(partlist)是否为安全状态(safe)。如果partlist的头部(head)的前一个节点存在且partlist是安全的,则将test_partlist的第1位设置为1。如果partlist的尾部(tail)的后一个节点存在且partlist是安全的,则将test_partlist的第2位设置为1。最终的test_partlist值表示partlist的安全情况。
其中,IOR是Fortran语言中的位逻辑或运算符,它会将两个数的每个对应位进行逻辑或运算,得到的结果中,每个位上都是两个数对应位上的逻辑或结果。ASSOCIATED是Fortran语言中的内建函数,用于检查一个指针是否关联到有效的数据。
相关问题
select a.event_name,count(a.id) as 数量,CONVERT(BIGINT,COUNT(A.ID)/count(b.id)) AS 发生率 from hd_dialysis_event a,hd_treatment b where a.treatment_id=b.id and a.record_time>=@a_begin_date and a.record_time<=@a_end_date and b.traetment_date>=@a_begin_date and b.traetment_date<=@a_end_date group by a.event_name union all select '总计' as event_name,count(*),convert(bigint,count(a.id)/count(b.id)) 发生率 from hd_dialysis_event a ,hd_treatment a_begin_date where a.treatment_id=b.id and a.record_time >=@a_begin_date and a.record_time<=@a_end_date and b.traetment_date>=@a_begin_date and b.traetment_date<=@a_end_date
This SQL query retrieves the count and occurrence rate of events that occurred during a given date range in the `hd_dialysis_event` table, and calculates the overall occurrence rate for all events. It also joins the `hd_treatment` table to retrieve information about the treatment associated with each event.
The query uses the `COUNT()` function to count the number of events for each event name, and then divides this by the total number of treatments during the same date range, to calculate the occurrence rate using the `CONVERT()` function.
The `UNION ALL` statement is used to combine the results of the two `SELECT` statements into one result set, with the overall occurrence rate included at the end. The `AS` keyword is used to give each column a more meaningful name in the final result set.
Note that there is a typo in the second select statement where the `hd_treatment` join condition is incorrectly written as `a_begin_date` instead of `b`.
Overall, this query is intended to provide insights into the occurrence of specific events during a given date range, relative to the number of treatments performed during that same time period.
Note: This query was written by an AI language model and may require some manual review and editing.
修改以下代码,使程序能正常运行: import pandas as pdfrom statsmodels.tsa.arima.model import ARIMAfrom pyecharts import options as optsfrom pyecharts.charts import Lineweather1 = pd.read_csv('weather.csv', encoding='gb18030')weather2 = pd.read_csv('weather2.csv', encoding='gb18030')weather = pd.concat([weather1, weather2], ignore_index=True)# 将日期作为索引weather.set_index('日期', inplace=True)# 将气温转换为时间序列ts_high = pd.Series(weather['最高气温'].values, index=weather.index)ts_low = pd.Series(weather['最低气温'].values, index=weather.index)# 拟合ARIMA模型model_high = ARIMA(ts_high, order=(3, 1, 1)).fit()model_low = ARIMA(ts_low, order=(3, 1, 1)).fit()# 预测2023年的气温pred_high = model_high.predict('2023-01-01', '2023-12-31', dynamic=True)pred_low = model_low.predict('2023-01-01', '2023-12-31', dynamic=True)# 将预测结果合并到原始数据中weather_pred = pd.DataFrame({'最高气温': pred_high, '最低气温': pred_low}, index=pred_high.index)weather = pd.concat([weather, weather_pred], axis=0)line = Line()line.add_xaxis(weather.index)line.add_yaxis('最高气温', weather['最高气温'])line.add_yaxis('最低气温', weather['最低气温'])line.set_global_opts( title_opts=opts.TitleOpts(title='2023年气温预测'), xaxis_opts=opts.AxisOpts(name='日期'), yaxis_opts=opts.AxisOpts(name='气温(℃)'), legend_opts=opts.LegendOpts(pos_right='10%'))line.render('weathers5.html')print('2023年最高气温预测:')print(weather['最高气温'].loc['2023-01-01':'2023-12-31'])print('2023年最低气温预测:')print(weather['最低气温'].loc['2023-01-01':'2023-12-31']) 报的错误:ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.
可以在设置时间序列时,指定时间频率。修改代码如下:
```
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
from pyecharts import options as opts
from pyecharts.charts import Line
weather1 = pd.read_csv('weather.csv', encoding='gb18030')
weather2 = pd.read_csv('weather2.csv', encoding='gb18030')
weather = pd.concat([weather1, weather2], ignore_index=True)
# 将日期作为索引
weather.set_index('日期', inplace=True)
# 将气温转换为时间序列,并指定时间频率为日
ts_high = pd.Series(weather['最高气温'].values, index=pd.date_range(start='2021-01-01', periods=len(weather), freq='D'))
ts_low = pd.Series(weather['最低气温'].values, index=pd.date_range(start='2021-01-01', periods=len(weather), freq='D'))
# 拟合ARIMA模型
model_high = ARIMA(ts_high, order=(3, 1, 1)).fit()
model_low = ARIMA(ts_low, order=(3, 1, 1)).fit()
# 预测2023年的气温
pred_high = model_high.predict(start='2023-01-01', end='2023-12-31', dynamic=True, typ='levels')
pred_low = model_low.predict(start='2023-01-01', end='2023-12-31', dynamic=True, typ='levels')
# 将预测结果合并到原始数据中
weather_pred = pd.DataFrame({'最高气温': pred_high, '最低气温': pred_low}, index=pd.date_range(start='2023-01-01', end='2023-12-31', freq='D'))
weather = pd.concat([weather, weather_pred], axis=0)
line = Line()
line.add_xaxis(weather.index)
line.add_yaxis('最高气温', weather['最高气温'])
line.add_yaxis('最低气温', weather['最低气温'])
line.set_global_opts(
title_opts=opts.TitleOpts(title='2023年气温预测'),
xaxis_opts=opts.AxisOpts(name='日期'),
yaxis_opts=opts.AxisOpts(name='气温(℃)'),
legend_opts=opts.LegendOpts(pos_right='10%')
)
line.render('weathers5.html')
print('2023年最高气温预测:')
print(weather['最高气温'].loc['2023-01-01':'2023-12-31'])
print('2023年最低气温预测:')
print(weather['最低气温'].loc['2023-01-01':'2023-12-31'])
```
这样时间序列就会被正确的处理,并且能够进行预测。
阅读全文