动态规划:最长上升子序列
时间: 2023-10-31 20:43:51 浏览: 90
解题思路?LIS?-dp之子序列
最长上升子序列(Longest Increasing Subsequence,简称 LIS)问题是指给定一个序列,找到其中最长的严格递增子序列。
例如,对于序列 [10, 9, 2, 5, 3, 7, 101, 18],最长上升子序列为 [2, 5, 7, 101],长度为 4。
动态规划算法是解决 LIS 问题的常用方法。设 dp[i] 表示以第 i 个元素为结尾的最长上升子序列的长度。则有状态转移方程:
dp[i] = max(dp[j] + 1),其中 j < i 且 nums[j] < nums[i]
即对于每个元素 i,遍历其之前的所有元素 j,如果 nums[j] < nums[i],则说明可以将 i 加入以 j 结尾的 LIS 中,从而得到以 i 结尾的 LIS。取所有可能的 LIS 长度的最大值即为所求。
最终答案为所有 dp[i] 中的最大值。时间复杂度为 O(n^2)。
阅读全文