矩阵连乘问题动态规划

时间: 2023-11-12 15:00:33 浏览: 100
矩阵连乘问题是指给定n个矩阵,求它们相乘的最小代价。这个问题可以使用动态规划来解决。具体来说,我们可以定义一个二维数组dp,其中dp[i][j]表示从第i个矩阵到第j个矩阵相乘的最小代价。那么状态转移方程为: dp[i][j] = min(dp[i][k] + dp[k+1][j] + p[i-1]*p[k]*p[j]) 其中p[i-1]表示第i个矩阵的行数,p[k]表示第k个矩阵的列数,p[j]表示第j个矩阵的列数。k的范围是从i到j-1。 最终的答案就是dp[n]。
相关问题

 矩阵连乘问题动态规划

矩阵连乘问题是指在计算多个矩阵相乘的结果时,如何安排乘法顺序,使得计算的总次数最少。这个问题可以使用动态规划来解决。 设矩阵链为 $\{A_1, A_2, \cdots, A_n\}$,其中矩阵 $A_i$ 的维度为 $p_{i-1} \times p_i$,$1 \leq i \leq n+1$,并设 $m_{i,j}$ 表示计算矩阵链 $\{A_i, A_{i+1}, \cdots, A_j\}$ 的最少乘法次数,则有以下递推式: $$ m_{i,j} = \left\{ \begin{aligned} &0, && i=j \\ &\min\limits_{i\leq k<j} \left\{ m_{i,k} + m_{k+1,j} + p_{i-1}p_kp_j \right\}, && i<j \end{aligned} \right. $$ 其中,当 $i=j$ 时,矩阵链中只有一个矩阵,不需要计算,乘法次数为 $0$;当 $i<j$ 时,要计算矩阵链 $\{A_i, A_{i+1}, \cdots, A_j\}$ 的最小乘法次数,可以将其拆分为两个子问题:计算矩阵链 $\{A_i, A_{i+1}, \cdots, A_k\}$ 的最小乘法次数,以及计算矩阵链 $\{A_{k+1}, A_{k+2}, \cdots, A_j\}$ 的最小乘法次数,其乘法次数为两者之和再加上两个矩阵相乘的乘法次数 $p_{i-1}p_kp_j$。 最终,矩阵链 $\{A_1, A_2, \cdots, A_n\}$ 的最小乘法次数就是 $m_{1,n}$。 下面是矩阵连乘问题的动态规划实现(使用 Python 语言): ```python def matrix_chain_order(p): n = len(p) - 1 # 矩阵个数 m = [[0] * (n+1) for _ in range(n+1)] # m[i][j] 表示计算矩阵链 {Ai, Ai+1, ..., Aj} 的最少乘法次数 s = [[0] * (n+1) for _ in range(n+1)] # s[i][j] 表示计算矩阵链 {Ai, Ai+1, ..., Aj} 最优的断点 k for l in range(2, n+1): # 计算长度为 l 的矩阵链 for i in range(1, n-l+2): j = i + l - 1 m[i][j] = float('inf') for k in range(i, j): q = m[i][k] + m[k+1][j] + p[i-1] * p[k] * p[j] if q < m[i][j]: m[i][j] = q s[i][j] = k return m, s # 示例 p = [30, 35, 15, 5, 10, 20, 25] m, s = matrix_chain_order(p) print(m[1][len(p)-1]) # 输出最小乘法次数 ``` 输出结果为 $15125$,表示计算矩阵链 $\{A_1, A_2, \cdots, A_6\}$ 的最少乘法次数为 $15125$。

矩阵连乘问题动态规划代码c++

### 动态规划解决矩阵链乘法问题 对于给定的一系列矩阵,计算最小化所需标量乘法次数的最佳括号方案是经典的动态规划问题。下面展示的是利用动态规划算法来求解这一问题的C++实现。 ```cpp #include <iostream> #include <vector> #include <climits> using namespace std; // Function to perform Matrix Chain Multiplication using Dynamic Programming. int matrixChainOrder(vector<int> p, int n) { vector<vector<int>> m(n, vector<int>(n)); // Cost is zero when multiplying one matrix. for (int i = 1; i < n; ++i) m[i][i] = 0; // L is the chain length of matrices being considered. for (int L = 2; L < n; ++L) { for (int i = 1; i < n - L + 1; ++i) { int j = i + L - 1; if (i >= j) continue; m[i][j] = INT_MAX; for (int k = i; k < j; ++k) { int q = m[i][k] + m[k + 1][j] + p[i - 1]*p[k]*p[j]; if (q < m[i][j]) { m[i][j] = q; } } } } return m[1][n-1]; } void printOptimalParens(const vector<vector<int>>& s, int i, int j) { if (i == j) cout << "A[" << i << "]"; else { cout << "("; printOptimalParens(s, i, s[i][j]); printOptimalParens(s, s[i][j]+1, j); cout << ")"; } } int main() { // Dimensions of matrices are stored as follows: // For three matrices A(30×35), B(35×15), C(15×5), // dimensions would be represented by array {30, 35, 15, 5}. vector<int> dims{30, 35, 15, 5, 10}; int size = dims.size(); cout << "Minimum number of multiplications needed: " << matrixChainOrder(dims, size) << endl; return 0; } ``` 上述代码实现了两个主要功能:`matrixChainOrder()` 函数负责构建最优成本表并返回最低代价;而 `printOptimalParens()` 则用于打印出最佳加括方式[^1]。
阅读全文

相关推荐

大家在看

recommend-type

ADS函数大全

本文档详细介绍了ADS中调用的函数,全面介绍函数的用途及语法,是初学者的必备良器!
recommend-type

光亮表面双目立体视觉三维形貌测量方法

光亮表面因其反射特性,一般三维形貌测量方法对此难以测量,针对该问题,本文给出了基于双目视觉结合相位偏折法对光亮表面进行三维形貌测量的方案。双目系统布局选用相机横向摆放方式,完整的屏幕-相机-可调节载物台测量系统被集成在定制框架内。对相移法中存在的非线性相位误差进行校正,在主值相位图内进行反向相位误差补偿,提高解包裹精度,为减小标定误差,将系统标定得到的位置参数使用Levenberg-Marquardt算法优化。结合光亮表面法向量唯一性和相机的极线约束提高匹配点搜索效率,对传统三角法求空间点进行改进,提高待测物表面点求取准确性,实验结果验证了所提方案具有较高的测量精度和稳定性。
recommend-type

FineBI Windows版本安装手册

非常详细 一定安装成功
recommend-type

amd主板现代待机规范S0i3

适合BIOS软件开发,适用于桌面设备的MS功能开发项目参考。 Modern Standby是一种新的电源型号,能够在低功耗空闲模式下即时启动 设备。它需要CPU、主板和BIOS以及软件的支持。AMD现代待机系统支持两种状态:S0i2和S0i3,它们的主要不同之处在于:功耗和唤醒延迟。 本文档涵盖BIOS和EC的要求和实现,以支持在AMD平台上现代待机。它还为客户设计提供了一些指导BIOS实现以启用MS •BIOS支持ACPI模型 •BIOS支持MS唤醒 •BIOS和EC中的节能支持 •单元测试问题调试
recommend-type

天风证券_0305_风险预算与组合优化.pdf

天风证券_0305_风险预算与组合优化.pdf

最新推荐

recommend-type

C语言矩阵连乘 (动态规划)详解

矩阵连乘的动态规划方法可以将矩阵连乘问题分解成小问题,每个小问题都可以通过矩阵连乘的方式来解决,然后组合这些小问题的解决方案来得到最优的矩阵连乘顺序。 矩阵连乘的动态规划方法可以分为两个步骤:第一步是...
recommend-type

Java矩阵连乘问题(动态规划)算法实例分析

Java矩阵连乘问题(动态规划)算法实例分析 本文主要介绍了Java矩阵连乘问题的动态规划算法实例分析。矩阵连乘问题是指给定n个矩阵,确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。 ...
recommend-type

动态规划之矩阵连乘问题Python实现方法

总的来说,动态规划之矩阵连乘问题的Python实现涉及到矩阵运算、动态规划理论和递归回溯等计算机科学中的基本概念。通过对子问题的分解和组合,我们可以有效地找到解决复杂问题的最优策略。这种思想在很多其他领域,...
recommend-type

矩阵连乘问题(动态规划)报告.doc

【矩阵连乘问题】是一种经典的动态规划应用,主要目的是找到一系列矩阵相乘的最优顺序,以使得乘法操作的次数最小。这个问题的关键在于利用最优子结构的性质,即解决大问题的最优解包含了子问题的最优解。 1. **...
recommend-type

矩阵连乘动态规划 算法分析

矩阵连乘动态规划算法分析 矩阵连乘问题是计算机科学中一个经典的问题,它涉及到矩阵的乘法和优化计算。在这个问题中,我们需要计算 n 个矩阵的乘法结果,并且找到最少的乘法次数以达到优化计算的目的。 矩阵连乘...
recommend-type

macOS 10.9至10.13版高通RTL88xx USB驱动下载

资源摘要信息:"USB_RTL88xx_macOS_10.9_10.13_driver.zip是一个为macOS系统版本10.9至10.13提供的高通USB设备驱动压缩包。这个驱动文件是针对特定的高通RTL88xx系列USB无线网卡和相关设备的,使其能够在苹果的macOS操作系统上正常工作。通过这个驱动,用户可以充分利用他们的RTL88xx系列设备,包括但不限于USB无线网卡、USB蓝牙设备等,从而实现在macOS系统上的无线网络连接、数据传输和其他相关功能。 高通RTL88xx系列是广泛应用于个人电脑、笔记本、平板和手机等设备的无线通信组件,支持IEEE 802.11 a/b/g/n/ac等多种无线网络标准,为用户提供了高速稳定的无线网络连接。然而,为了在不同的操作系统上发挥其性能,通常需要安装相应的驱动程序。特别是在macOS系统上,由于操作系统的特殊性,不同版本的系统对硬件的支持和驱动的兼容性都有不同的要求。 这个压缩包中的驱动文件是特别为macOS 10.9至10.13版本设计的。这意味着如果你正在使用的macOS版本在这个范围内,你可以下载并解压这个压缩包,然后按照说明安装驱动程序。安装过程通常涉及运行一个安装脚本或应用程序,或者可能需要手动复制特定文件到系统目录中。 请注意,在安装任何第三方驱动程序之前,应确保从可信赖的来源获取。安装非官方或未经认证的驱动程序可能会导致系统不稳定、安全风险,甚至可能违反操作系统的使用条款。此外,在安装前还应该查看是否有适用于你设备的更新驱动版本,并考虑备份系统或创建恢复点,以防安装过程中出现问题。 在标签"凄 凄 切 切 群"中,由于它们似乎是无意义的汉字组合,并没有提供有关该驱动程序的具体信息。如果这是一组随机的汉字,那可能是压缩包文件名的一部分,或者可能是文件在上传或处理过程中产生的错误。因此,这些标签本身并不提供与驱动程序相关的任何技术性知识点。 总结来说,USB_RTL88xx_macOS_10.9_10.13_driver.zip包含了用于特定高通RTL88xx系列USB设备的驱动,适用于macOS 10.9至10.13版本的操作系统。在安装驱动之前,应确保来源的可靠性,并做好必要的系统备份,以防止潜在的系统问题。"
recommend-type

PyCharm开发者必备:提升效率的Python环境管理秘籍

# 摘要 本文系统地介绍了PyCharm集成开发环境的搭建、配置及高级使用技巧,重点探讨了如何通过PyCharm进行高效的项目管理和团队协作。文章详细阐述了PyCharm项目结构的优化方法,包括虚拟环境的有效利用和项目依赖的管理。同时,本文也深入分析了版本控制的集成流程,如Git和GitHub的集成,分支管理和代码合并策略。为了提高代码质量,本文提供了配置和使用linters以及代码风格和格式化工具的指导。此外,本文还探讨了PyCharm的调试与性能分析工具,插件生态系统,以及定制化开发环境的技巧。在团队协作方面,本文讲述了如何在PyCharm中实现持续集成和部署(CI/CD)、代码审查,以及
recommend-type

matlab中VBA指令集

MATLAB是一种强大的数值计算和图形处理软件,主要用于科学计算、工程分析和技术应用。虽然它本身并不是基于Visual Basic (VB)的,但在MATLAB环境中可以利用一种称为“工具箱”(Toolbox)的功能,其中包括了名为“Visual Basic for Applications”(VBA)的接口,允许用户通过编写VB代码扩展MATLAB的功能。 MATLAB的VBA指令集实际上主要是用于操作MATLAB的工作空间(Workspace)、图形界面(GUIs)以及调用MATLAB函数。VBA代码可以在MATLAB环境下运行,执行的任务可能包括但不限于: 1. 创建和修改变量、矩阵
recommend-type

在Windows Forms和WPF中实现FontAwesome-4.7.0图形

资源摘要信息: "将FontAwesome470应用于Windows Forms和WPF" 知识点: 1. FontAwesome简介: FontAwesome是一个广泛使用的图标字体库,它提供了一套可定制的图标集合,这些图标可以用于Web、桌面和移动应用的界面设计。FontAwesome 4.7.0是该库的一个版本,它包含了大量常用的图标,用户可以通过简单的CSS类名引用这些图标,而无需下载单独的图标文件。 2. .NET开发中的图形处理: 在.NET开发中,图形处理是一个重要的方面,它涉及到创建、修改、显示和保存图像。Windows Forms和WPF(Windows Presentation Foundation)是两种常见的用于构建.NET桌面应用程序的用户界面框架。Windows Forms相对较为传统,而WPF提供了更为现代和丰富的用户界面设计能力。 3. 将FontAwesome集成到Windows Forms中: 要在Windows Forms应用程序中使用FontAwesome图标,首先需要将FontAwesome字体文件(通常是.ttf或.otf格式)添加到项目资源中。然后,可以通过设置控件的字体属性来使用FontAwesome图标,例如,将按钮的字体设置为FontAwesome,并通过设置其Text属性为相应的FontAwesome类名(如"fa fa-home")来显示图标。 4. 将FontAwesome集成到WPF中: 在WPF中集成FontAwesome稍微复杂一些,因为WPF对字体文件的支持有所不同。首先需要在项目中添加FontAwesome字体文件,然后通过XAML中的FontFamily属性引用它。WPF提供了一个名为"DrawingImage"的类,可以将图标转换为WPF可识别的ImageSource对象。具体操作是使用"FontIcon"控件,并将FontAwesome类名作为Text属性值来显示图标。 5. FontAwesome字体文件的安装和引用: 安装FontAwesome字体文件到项目中,通常需要先下载FontAwesome字体包,解压缩后会得到包含字体文件的FontAwesome-master文件夹。将这些字体文件添加到Windows Forms或WPF项目资源中,一般需要将字体文件复制到项目的相应目录,例如,对于Windows Forms,可能需要将字体文件放置在与主执行文件相同的目录下,或者将其添加为项目的嵌入资源。 6. 如何使用FontAwesome图标: 在使用FontAwesome图标时,需要注意图标名称的正确性。FontAwesome提供了一个图标检索工具,帮助开发者查找和确认每个图标的确切名称。每个图标都有一个对应的CSS类名,这个类名就是用来在应用程序中引用图标的。 7. 面向不同平台的应用开发: 由于FontAwesome最初是为Web开发设计的,将它集成到桌面应用中需要做一些额外的工作。在不同平台(如Web、Windows、Mac等)之间保持一致的用户体验,对于开发团队来说是一个重要考虑因素。 8. 版权和使用许可: 在使用FontAwesome字体图标时,需要遵守其提供的许可证协议。FontAwesome有多个许可证版本,包括免费的公共许可证和个人许可证。开发者在将FontAwesome集成到项目中时,应确保符合相关的许可要求。 9. 资源文件管理: 在管理包含FontAwesome字体文件的项目时,应当注意字体文件的维护和更新,确保在未来的项目版本中能够继续使用这些图标资源。 10. 其他图标字体库: FontAwesome并不是唯一一个图标字体库,还有其他类似的选择,例如Material Design Icons、Ionicons等。开发人员可以根据项目需求和偏好选择合适的图标库,并学习如何将它们集成到.NET桌面应用中。 以上知识点总结了如何将FontAwesome 4.7.0这一图标字体库应用于.NET开发中的Windows Forms和WPF应用程序,并涉及了相关的图形处理、资源管理和版权知识。通过这些步骤和细节,开发者可以更有效地增强其应用程序的视觉效果和用户体验。
recommend-type

【Postman进阶秘籍】:解锁高级API测试与管理的10大技巧

# 摘要 本文系统地介绍了Postman工具的基础使用方法和高级功能,旨在提高API测试的效率与质量。第一章概述了Postman的基本操作,为读者打下使用基础。第二章深入探讨了Postman的环境变量设置、集合管理以及自动化测试流程,特别强调了测试脚本的编写和持续集成的重要性。第三章介绍了数据驱动测试、高级断言技巧以及性能测试,这些都是提高测试覆盖率和测试准确性的关键技巧。第四章侧重于API的管理,包括版本控制、文档生成和分享,以及监控和报警系统的设计,这些是维护和监控API的关键实践。最后,第五章讨论了Postman如何与DevOps集成以及插件的使用和开发,展示了Postman在更广阔的应