遗传算法进行第一类生产线平衡优化的代码
时间: 2024-09-17 20:01:33 浏览: 77
在遗传算法中应用到生产线平衡优化时,通常涉及到分配工作任务给不同的工作站,以最小化生产时间或成本。这里以一个简化版本的Python代码为例,使用DEAP(Distributed Evolutionary Algorithms in Python)库,假设我们有若干个工作站和任务,目标是最优地分配任务给各个工作站以达成平衡:
```python
from deap import base, creator, tools
import random
# 定义基因编码(每个基因代表一个工作站的任务)
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
def evaluate(individual):
# 模拟生产线的实际计算,例如任务完成时间和成本
total_time, total_cost = calculate_production_time_and_cost(individual)
return (-total_time, -total_cost),
def assign_task(workstations, tasks):
# 你的任务分配策略
...
def mutate(individual):
# 生成随机变异,例如交换两个工作站的任务
...
def crossover(parent1, parent2):
# 简单的二点交叉
...
toolbox = base.Toolbox()
toolbox.register("population", tools.initRepeat, list, creator.Individual)
toolbox.register("evaluate", evaluate)
toolbox.register("mate", crossover)
toolbox.register("mutate", mutate)
# 初始化种群、设置参数等
...
for gen in range(num_generations):
offspring = toolbox.select(population, len(population)) # 选择优秀的个体
offspring = [toolbox.clone(ind) for ind in offspring] # 克隆避免直接修改原种群
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < crossover_probability:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
if random.random() < mutation_probability:
toolbox.mutate(mutant)
del mutant.fitness.values
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
population[:] = offspring
best_solution = tools.selBest(population, 1)[0]
# 输出最佳解
best_solution, best_fitness = best_solution[0], best_solution[1]
print("最优解:", best_solution)
print("总时间:", -best_fitness[0]) # 因为我们返回的是负的生产时间
阅读全文