使用python,用遗传算法求f(x)=xcosx+2的最大值
时间: 2024-11-21 13:38:46 浏览: 33
在Python中,我们可以使用遗传算法(Genetic Algorithm, GA)来优化函数f(x) = x * cos(x) + 2,这是一个连续优化问题。遗传算法是一种模拟自然选择过程的搜索算法,适用于解决复杂的全局优化问题。
首先,你需要做的是定义几个关键步骤:
1. 初始化种群(Population):随机生成一组解(通常是实数,范围可以是你想要探索的函数域,比如-10到10)作为初始个体。
2. 计算适应度(Fitness):对于每个个体,计算其对应的目标函数f(x)的值。适应度越高,说明这个解越接近最优。
3. 选择操作(Selection):依据适应度对个体进行选择,如轮盘赌选择、锦标赛选择等,选出一部分优秀的个体进入下一轮。
4. 变异操作(Crossover):对选中的个体进行交叉,即交换部分基因(解的组成部分),以产生新的变异体。
5. 突变操作(Mutation):对新产生的个体及其父母进行突变,增加种群多样性。
6. 重复迭代:不断进行上述步骤直到达到预设的代数次数,或者找到足够好的解。
以下是简化版的Python代码实现:
```python
import numpy as np
from sklearn import metrics
def fitness(x):
return x * np.cos(x) + 2
def selection(population, fitness_values, size):
# 这里使用roulette wheel selection
probabilities = fitness_values / sum(fitness_values)
return np.random.choice(population, size, p=probabilities)
def crossover(parents, offspring_size):
# 随机单点交叉
parent1, parent2 = parents
point = np.random.randint(0, len(parent1))
child = np.concatenate((parent1[:point], parent2[point:]))
return child
def mutate(child, mutation_rate):
if np.random.rand() < mutation_rate:
index = np.random.randint(0, len(child))
child[index] += np.random.randn()
return child
# 示例设置
population_size = 50
num_generations = 1000
mutation_rate = 0.01
cross_over_probability = 0.8
# 初始化种群
population = np.random.uniform(-10, 10, population_size)
for _ in range(num_generations):
# 计算适应度
fitness_values = [fitness(x) for x in population]
# 选择
selected = selection(population, fitness_values, int(population_size * cross_over_probability))
# 交叉和突变
offspring = []
for _ in range(int(population_size * (1 - cross_over_probability))):
offspring.append(mutate(selected[np.random.randint(0, len(selected))], mutation_rate))
for i in range(int(population_size * cross_over_probability)):
offspring.append(crossover(selected[np.random.randint(0, len(selected))], 2))
# 更新种群
population = offspring
# 找到最佳解
best_solution = population[np.argmax(fitness_values)]
max_fitness = fitness(best_solution)
print("Best solution found:", best_solution, "with maximum fitness:", max_fitness)
阅读全文