编写一段代码:创建一个code文件,其中包含一个unet模块,unet模块可以进行调用飞桨提供的summary接口对组建好的模型进行可视化。
时间: 2024-10-08 22:02:56 浏览: 28
```python
import paddle
import paddle.nn as nn
class UNet(nn.Layer):
def __init__(self, in_channels, out_channels):
super(UNet, self).__init__()
# 定义UNet的编码器部分
self.encoder = nn.Sequential(
nn.Conv2D(in_channels, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Conv2D(64, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Conv2D(128, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Conv2D(256, 512, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Conv2D(512, 1024, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2)
)
# 定义UNet的解码器部分
self.decoder = nn.Sequential(
nn.Conv2DTranspose(1024, 512, kernel_size=2, stride=2),
nn.ReLU(),
nn.Conv2DTranspose(512, 256, kernel_size=2, stride=2),
nn.ReLU(),
nn.Conv2DTranspose(256, 128, kernel_size=2, stride=2),
nn.ReLU(),
nn.Conv2DTranspose(128, 64, kernel_size=2, stride=2),
nn.ReLU(),
nn.Conv2DTranspose(64, out_channels, kernel_size=2, stride=2),
nn.Sigmoid()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# 创建模型实例
model = UNet(in_channels=3, out_channels=1)
# 调用飞桨提供的summary接口对组建好的模型进行可视化
paddle.summary(model, input_size=(3, 256, 256))
```
阅读全文