python相关性热力图
时间: 2023-09-07 21:17:05 浏览: 102
在Python中,可以使用pandas库的corr()方法和seaborn库的heatmap()函数绘制相关性热力图。相关性热力图可以用来显示数据中不同变量之间的相关性大小。
首先,我们需要导入相应的库和数据集。在代码中,使用pandas的read_csv()方法导入数据集,并使用df.corr()计算每个列两两之间的相关系数。将相关系数存储在df_coor变量中。
接下来,我们可以使用seaborn库的heatmap()函数绘制相关性热力图。在调用heatmap()函数时,需要传入相关系数矩阵df.corr()作为参数,并可以设置一些可选的参数,如annot(是否显示数值)、vmax(颜色映射的最大值)、square(是否将方块设置为正方形)等。
最后,使用matplotlib库的plt.show()方法显示热力图,或使用plt.savefig()方法保存图像。
通过观察热力图中不同方块的颜色,可以判断变量之间的相关性大小。例如,较深的颜色表示较大的相关系数,较浅的颜色表示较小的相关系数。
在你提供的引用中,可以看到一个具体的代码示例,该示例导入了数据集,计算了相关系数矩阵,并绘制了相关性热力图。
综上所述,使用pandas和seaborn库可以很方便地在Python中绘制相关性热力图,以帮助我们分析变量之间的相关性。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [【python 相关性分析】Python绘制相关性热力图](https://blog.csdn.net/u013421629/article/details/123750296)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [【python】python绘制相关性热力图](https://blog.csdn.net/AugustMe/article/details/128715756)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文