线性回归和逻辑回归区别
时间: 2024-03-23 13:34:30 浏览: 84
PyTorch线性回归和逻辑回归实战示例.pdf
线性回归和逻辑回归是两种常见的回归算法,它们在应用场景和模型形式上有所不同。
1. 应用场景:
- 线性回归适用于预测连续数值的问题,例如房价预测、销售额预测等。
- 逻辑回归适用于分类问题,例如判断邮件是否为垃圾邮件、预测用户是否会购买某个产品等。
2. 模型形式:
- 线性回归通过拟合一个线性方程来建立输入特征与输出之间的关系它假输入特征与输出之间存在线性关系,通过最小化预测值与实值之间的差距来确定模型参数。
- 逻辑回归则是一种广义线性模型,通过使用逻辑函数(如sigmoid函数)将线性方程的输出映射0和1之间的概率值。它假设输入特征与输出之间存在一种概率关系,通过最大化似然函数来确定模型参数。
3. 输出结果:
- 线性回归的输出是一个连续数值,可以是任意实数。
- 逻辑回归的输出是一个概率值,表示样本属于某个类别的概率。通常使用一个阈值来将概率值转化为二分类结果。
阅读全文