自注意力机制QKV矩阵
时间: 2024-05-02 07:15:37 浏览: 186
Dmf_AttnDMF:深度矩阵分解模型 与 带注意力的深度矩阵分解模型
自注意力机制(Self-Attention Mechanism)是一种基于注意力机制的模型,广泛应用于自然语言处理和计算机视觉等领域。自注意力机制中的QKV矩阵指的是Query、Key和Value矩阵。
具体来说,给定一个输入序列,我们将其分别映射到三个不同的空间中,得到三个向量序列Q、K和V。Q、K和V的维度均为d,分别表示查询向量、键向量和值向量。然后,我们对Q、K进行点积运算,再经过softmax归一化处理,得到一个与输入序列长度相同的权重向量,用于对V进行加权求和,得到最终的输出。
这里需要注意的是,Q、K和V是通过线性变换得到的,因此可以使用矩阵乘法来同时处理多个位置的输入序列。具体来说,我们可以将输入序列表示为一个矩阵X,然后分别对X进行三个线性变换,得到Q、K和V矩阵。最后,利用这三个矩阵来计算自注意力输出。
阅读全文