R中confusionMatrix(trainY, train.probs) Error: `data` and `reference` should be factors with the same levels.
时间: 2024-01-27 18:05:17 浏览: 162
根据你提供的错误信息,似乎在使用`confusionMatrix()`函数时出现了问题。错误信息指出`data`和`reference`应该是具有相同水平的因子变量。
解决这个问题的方法是确保`trainY`和`train.probs`都是因子变量,并且它们具有相同的水平。你可以使用`factor()`函数来将它们转换为因子变量,并使用`levels()`函数来检查它们的水平是否相同。
下面是可能的解决方案:
```R
trainY <- factor(trainY)
train.probs <- factor(train.probs)
# 检查因子变量的水平
levels(trainY)
levels(train.probs)
# 运行confusionMatrix函数
confusionMatrix(trainY, train.probs)
```
在这段代码中,我们首先使用`factor()`函数将`trainY`和`train.probs`转换为因子变量。然后,使用`levels()`函数检查它们的水平是否相同。最后,我们再次运行`confusionMatrix()`函数以获取混淆矩阵。
请确保`trainY`和`train.probs`是因子变量并具有相同的水平,这样就能成功运行`confusionMatrix()`函数了。
如果你还有其他问题,请随时提问。
相关问题
glm.probs=predict(glm.fit,type = "response") glm.probs[1:10] contrasts(lable)
您的问题是关于 R 语言中的逻辑回归模型的预测和对分类变量进行对比的方法。下面是回答:
在 R 语言中,使用逻辑回归模型 glm.fit 对数据进行拟合后,可以使用 predict 函数来进行预测。其中,参数 type = "response" 表示输出的结果为概率值,即预测为正例的概率。具体命令如下:
```
glm.probs = predict(glm.fit, type = "response")
```
这将返回一个向量 glm.probs,其中包含了每个观测值的预测概率。如果您想查看前 10 个观测值的预测概率,可以使用以下命令:
```
glm.probs[1:10]
```
另外,如果您想对分类变量进行对比,可以使用 contrasts 函数。具体命令如下:
```
contrasts(lable)
```
其中,lable 为需要进行对比的分类变量。这将返回一个矩阵,其中包含了该分类变量各个水平之间的对比结果。需要注意的是,这些命令的输出结果可能因为数据不同而有所不同。
Compute the loss and gradients for a two layer fully connected neural network. Inputs: - X: Input data of shape (N, D). Each X[i] is a training sample. - y: Vector of training labels. y[i] is the label for X[i], and each y[i] is an integer in the range 0 <= y[i] < C. This parameter is optional; if it is not passed then we only return scores, and if it is passed then we instead return the loss and gradients. - reg: Regularization strength. Returns: If y is None, return a matrix scores of shape (N, C) where scores[i, c] is the score for class c on input X[i]. If y is not None, instead return a tuple of: - loss: Loss (data loss and regularization loss) for this batch of training samples. - grads: Dictionary mapping parameter names to gradients of those parameters with respect to the loss function; has the same keys as self.params.
To compute the loss and gradients for a two layer fully connected neural network, we need to perform forward and backward propagation.
Forward propagation:
1. Compute the scores for each class by multiplying the input data X with the weight matrix W1 and adding the bias term b1. Then apply ReLU activation function to the result.
2. Compute the scores for each class by multiplying the output of the first layer with the weight matrix W2 and adding the bias term b2.
The loss function for a multi-class classification problem is usually the cross-entropy loss.
Backward propagation:
1. Compute the gradient of the loss with respect to the scores of the second layer.
2. Compute the gradient of the loss with respect to the parameters of the second layer (W2 and b2).
3. Compute the gradient of the loss with respect to the output of the first layer.
4. Compute the gradient of the loss with respect to the scores of the first layer (taking into account the ReLU activation function).
5. Compute the gradient of the loss with respect to the parameters of the first layer (W1 and b1).
Finally, we add the regularization term to the loss and compute the gradients with respect to the regularization term as well.
Here's the code:
```python
def two_layer_fc(X, params, reg=0.0):
W1, b1, W2, b2 = params['W1'], params['b1'], params['W2'], params['b2']
N, D = X.shape
scores = None
# Forward pass
hidden_layer = np.maximum(0, np.dot(X, W1) + b1) # ReLU activation
scores = np.dot(hidden_layer, W2) + b2
# If y is not given, return scores
if y is None:
return scores
# Compute the loss and gradients
loss = None
grads = {}
# Compute the loss (data loss and regularization loss)
num_classes = W2.shape[1]
exp_scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
correct_logprobs = -np.log(probs[range(N),y])
data_loss = np.sum(correct_logprobs) / N
reg_loss = 0.5 * reg * (np.sum(W1*W1) + np.sum(W2*W2))
loss = data_loss + reg_loss
# Compute the gradients
dscores = probs
dscores[range(N),y] -= 1
dscores /= N
dW2 = np.dot(hidden_layer.T, dscores)
db2 = np.sum(dscores, axis=0, keepdims=True)
dhidden = np.dot(dscores, W2.T)
dhidden[hidden_layer <= 0] = 0
dW1 = np.dot(X.T, dhidden)
db1 = np.sum(dhidden, axis=0, keepdims=True)
# Add regularization gradient contribution
dW2 += reg * W2
dW1 += reg * W1
# Store gradients in dictionary
grads['W1'] = dW1
grads['b1'] = db1
grads['W2'] = dW2
grads['b2'] = db2
return loss, grads
```
阅读全文