yolov5n网络架构图
时间: 2024-06-11 09:03:17 浏览: 207
Yolov5训练权重+官方yolov5n和yolov5s+可见光单个人体识别权重+.pt文件
YOLOv5(You Only Look Once version 5)是基于YOLO系列的最新版本,由 Ultralytics 公司开发,是一种高效的实时目标检测模型。YOLOv5N是YOLOv5家族中的一个变体,它属于“Nano”版本,主要针对资源受限的设备和对速度有高要求的应用场景。
YOLOv5N的网络架构图简化了原始版本,主要包括以下几个关键组件:
1. **输入层**:接受图像作为输入,通常为固定大小的RGB格式。
2. **卷积层(Convolutional Layers)**:使用小的3x3或1x1卷积核进行特征提取,减少计算量和内存占用。
3. **残差块(Residual Blocks)**:YOLOv5继承了ResNet的思想,使用残差连接提高模型性能,尤其是在小型模型中。
4. **瓶颈块(SPP Bottlenecks)**:空间金字塔池化(Spatial Pyramid Pooling)用于捕获不同尺度的目标。
5. **检测头(Detection Heads)**:包括中心点预测、尺寸预测和类别预测,采用单次前向传播(Single Shot)方法生成目标框。
6. **输出层**:输出层将特征图转换为目标框的坐标和置信度以及对应的类别信息。
7. **轻量化设计**:YOLOv5N通过裁剪一些高级层、降低分辨率或使用更小的滤波器来进一步减小模型体积。
阅读全文