def CNN_LSTM_model(input_size): model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(input_size, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(LSTM(32)) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) return model。改写成适合5g异常流量数据判断的代码

时间: 2023-06-18 09:03:03 浏览: 42
可以根据实际情况调整模型参数和输入数据的特征,以下是一个示例: ```python def CNN_LSTM_model(input_shape): model = Sequential() model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=input_shape)) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.25)) model.add(LSTM(64)) model.add(Dense(32, activation='relu')) model.add(Dense(1, activation='sigmoid')) return model ``` 这个模型包括一个卷积层、一个最大池化层、一个 dropout 层、一个 LSTM 层和两个全连接层。输入数据的形状为 (batch_size, timesteps, features),其中 batch_size 表示批处理大小,timesteps 表示时间步长,features 表示每个时间步长的特征数。对于异常流量数据,可以将 features 设为网络流量的相关特征,比如源 IP、目的 IP、协议类型、端口号等。
相关问题

def CNN_LSTM_model(input_size): model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(input_size, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(LSTM(32)) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) return model。改成更适合5g异常流量数据分析的代码

对于5G异常流量数据分析,建议尝试以下改进: 1. 更改卷积层的参数:由于5G数据通常包含多个维度,如时间、地理位置、设备类型等,因此可以增加卷积层数量和不同的卷积核大小来捕捉多个方面的特征。如下所示: ``` model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(input_size, 3))) model.add(Conv1D(filters=64, kernel_size=3, activation='relu')) model.add(Conv1D(filters=128, kernel_size=5, activation='relu')) ``` 2. 增加LSTM层的数量和单元数:LSTM层可以帮助模型捕捉时间序列上的依赖关系,因此可以增加LSTM层数和每层的单元数。如下所示: ``` model.add(LSTM(64, return_sequences=True)) model.add(LSTM(32)) ``` 3. 更改输出层的激活函数:由于异常流量检测是一个二元分类问题,因此建议使用Sigmoid作为输出层的激活函数,而不是ReLU。如下所示: ``` model.add(Dense(1, activation='sigmoid')) ``` 综上所述,您可以尝试以下代码: ``` def CNN_LSTM_model(input_size): model = Sequential() model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(input_size, 3))) model.add(Conv1D(filters=64, kernel_size=3, activation='relu')) model.add(Conv1D(filters=128, kernel_size=5, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(LSTM(64, return_sequences=True)) model.add(LSTM(32)) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) return model ```

def C_LSTM_model(input_size): model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu',input_shape=(input_size, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(LSTM(32)) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) return model代码讲解

这段代码实现了一个简单的 CNN-LSTM 模型,接受长度为 input_size 的输入序列,输出二分类结果。 具体来说,这个模型由以下几层组成: - 一个 1D 卷积层,使用 64 个大小为 3 的卷积核,激活函数为 ReLU,输入形状为 (input_size, 1)。 - 一个最大池化层,使用大小为 2 的池化窗口,对卷积层输出进行下采样。 - 一个 Dropout 层,以 0.5 的概率随机丢弃神经元,以减少过拟合。 - 一个 LSTM 层,使用 32 个隐藏单元,处理卷积层和池化层的输出序列。 - 一个全连接层,使用 10 个隐藏单元,激活函数为 ReLU。 - 一个输出层,使用 sigmoid 激活函数,输出一个二分类结果。 整个模型的结构如下: ``` Layer (type) Output Shape Param # ================================================================= conv1d_1 (Conv1D) (None, input_size-2, 64) 256 _________________________________________________________________ max_pooling1d_1 (MaxPooling1 (None, (input_size-2)/2, 64) 0 _________________________________________________________________ dropout_1 (Dropout) (None, (input_size-2)/2, 64) 0 _________________________________________________________________ lstm_1 (LSTM) (None, 32) 12416 _________________________________________________________________ dense_1 (Dense) (None, 10) 330 _________________________________________________________________ dense_2 (Dense) (None, 1) 11 ================================================================= Total params: 12,013 Trainable params: 12,013 Non-trainable params: 0 ``` 其中,Param # 表示每一层的参数数量。

相关推荐

def create_LSTM_model(X_train,n_steps,n_length, n_features): # instantiate the model model = Sequential() model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features)) model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features))) model.add(Flatten()) # cnn1d Layers # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model(X_train,n_steps,n_length, n_features) # summary print(model.summary())修改该代码,解决ValueError Traceback (most recent call last) <ipython-input-54-536a68c200e5> in <module> 52 return model 53 # lstm network ---> 54 model = create_LSTM_model(X_train,n_steps,n_length, n_features) 55 # summary 56 print(model.summary()) <ipython-input-54-536a68c200e5> in create_LSTM_model(X_train, n_steps, n_length, n_features) 22 X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features)) 23 ---> 24 model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', 25 input_shape=(n_steps, 1, n_length, n_features))) 26 model.add(Flatten()) ~\anaconda3\lib\site-packages\tensorflow\python\trackable\base.py in _method_wrapper(self, *args, **kwargs) 203 self._self_setattr_tracking = False # pylint: disable=protected-access 204 try: --> 205 result = method(self, *args, **kwargs) 206 finally: 207 self._self_setattr_tracking = previous_value # pylint: disable=protected-access ~\anaconda3\lib\site-packages\keras\utils\traceback_utils.py in error_handler(*args, **kwargs) 68 # To get the full stack trace, call: 69 # tf.debugging.disable_traceback_filtering() ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb ~\anaconda3\lib\site-packages\keras\engine\input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name) 233 ndim = shape.rank 234 if ndim != spec.ndim: --> 235 raise ValueError( 236 f'Input {input_index} of layer "{layer_name}" ' 237 "is incompatible with the layer: " ValueError: Input 0 of layer "conv_lstm2d_12" is incompatible with the layer: expected ndim=5, found ndim=3. Full shape received: (None, 10, 5)错误

df = pd.read_csv('车辆:1499序:2结果数据换算单位.csv') scaler = MinMaxScaler() df[['本车速度', '车头间距', '原车道前车速度', '本车加速度']] = scaler.fit_transform(df[['本车速度', '车头间距', '原车道前车速度', '本车加速度']]) #接下来,我们将数据集分成训练集和测试集 train_size = int(len(df) * 0.8) train = df[:train_size] test = df[train_size:] #然后,我们将数据转换成3D数组,以便于CNN-LSTM模型的处理 def create_dataset(X, y, time_steps=1): Xs, ys = [], [] for i in range(len(X) - time_steps): Xs.append(X.iloc[i:(i + time_steps)].values) ys.append(y.iloc[i + time_steps]) return np.array(Xs), np.array(ys) TIME_STEPS = 10 X_train, y_train = create_dataset(train[['本车速度', '车头间距', '原车道前车速度']], train['本车加速度'], time_steps=TIME_STEPS) X_test, y_test = create_dataset(test[['本车速度', '车头间距', '原车道前车速度']], test['本车加速度'], time_steps=TIME_STEPS) #接下来,我们定义并构建CNN-LSTM模型 model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(TIME_STEPS, 3))) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(RepeatVector(1)) model.add(LSTM(64, activation='relu', return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(32, activation='relu', return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') #最后,我们训练模型,并进行预测 model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.1, verbose=1) train_predict = model.predict(X_train) test_predict = model.predict(X_test) train_predict = scaler.inverse_transform(train_predict) y_train = scaler.inverse_transform([y_train]) test_predict = scaler.inverse_transform(test_predict) y_test = scaler.inverse_transform([y_test])

最新推荐

recommend-type

微信小程序-番茄时钟源码

微信小程序番茄时钟的源码,支持进一步的修改。番茄钟,指的是把工作任务分解成半小时左右,集中精力工作25分钟后休息5分钟,如此视作种一个“番茄”,而“番茄工作法”的流程能使下一个30分钟更有动力。
recommend-type

激光雷达专题研究:迈向高阶智能化关键,前瞻布局把握行业脉搏.pdf

电子元件 电子行业 行业分析 数据分析 数据报告 行业报告
recommend-type

安享智慧理财测试项目Mock服务代码

安享智慧理财测试项目Mock服务代码
recommend-type

课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip

【资源说明】 课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip 【备注】 1、该项目是高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

华中科技大学电信专业 课程资料 作业 代码 实验报告-雷达与信息对抗-内含源码和说明书.zip

华中科技大学电信专业 课程资料 作业 代码 实验报告-雷达与信息对抗-内含源码和说明书.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。