二叉树的建立与基本操作

时间: 2023-11-12 15:09:01 浏览: 59
二叉树是一种树形结构,每个节点最多只有两个子节点,分别称为左子节点和右子节点。二叉树的建立可以通过递归或非递归方式实现。其中递归方式是最常用的方式之一,具体实现方法是:先创建一个根节点,然后递归创建左子树和右子树,直到所有节点都被创建完毕。非递归方式则需要借助栈来实现。 二叉树的基本操作包括遍历、插入、删除、查找等。其中遍历分为前序遍历、中序遍历和后序遍历三种方式。前序遍历是先遍历根节点,然后遍历左子树和右子树;序遍历是先遍历左子树,然后遍历根节点和右子树;后序遍历是先遍历左子树和右子树,然后遍历根节点。插入操作是将一个新节点插入到二叉树中的合适位置,删除操作是将一个节点从二叉树中删除,查找操作是在二叉树中查找一个节点是否存在。 下面是一些二叉树基本操作的代码实现: - 二叉树的建立 ``` struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { if (preorder.empty() || inorder.empty()) { return NULL; } int rootVal = preorder[0]; TreeNode* root = new TreeNode(rootVal); vector<int>::iterator it = find(inorder.begin(), inorder.end(), rootVal); vector<int> leftInorder(inorder.begin(), it); vector<int> rightInorder(it + 1, inorder.end()); vector<int> leftPreorder(preorder.begin() + 1, preorder.begin() + 1 + leftInorder.size()); vector<int> rightPreorder(preorder.begin() + 1 + leftInorder.size(), preorder.end()); root->left = buildTree(leftPreorder, leftInorder); root->right = buildTree(rightPreorder, rightInorder); return root; } ``` - 前序遍历 ``` void preorderTraversal(TreeNode* root) { if (root == NULL) { return; } cout << root->val << " "; preorderTraversal(root->left); preorderTraversal(root->right); } ``` - 中序遍历 ``` void inorderTraversal(TreeNode* root) { if (root == NULL) { return; } inorderTraversal(root->left); cout << root->val << " "; inorderTraversal(root->right); } ``` - 后序遍历 ``` void postorderTraversal(TreeNode* root) { if (root == NULL) { return; } postorderTraversal(root->left); postorderTraversal(root->right); cout << root->val << " "; } ``` - 插入操作 ``` TreeNode* insertNode(TreeNode* root, int val) { if (root == NULL) { return new TreeNode(val); } if (val < root->val) { root->left = insertNode(root->left, val); } else { root->right = insertNode(root->right, val); } return root; } ``` - 删除操作 ``` TreeNode* deleteNode(TreeNode* root, int key) { if (root == NULL) { return NULL; } if (key < root->val) { root->left = deleteNode(root->left, key); } else if (key > root->val) { root->right = deleteNode(root->right, key); } else { if (root->left == NULL) { TreeNode* temp = root->right; delete root; return temp; } else if (root->right == NULL) { TreeNode* temp = root->left; delete root; return temp; } TreeNode* temp = root->right; while (temp->left != NULL) { temp = temp->left; } root->val = temp->val; root->right = deleteNode(root->right, temp->val); } return root; } ``` - 查找操作 ``` TreeNode* searchNode(TreeNode* root, int key) { if (root == NULL || root->val == key) { return root; } if (key < root->val) { return searchNode(root->left, key); } else { return searchNode(root->right, key); } } ```

相关推荐

最新推荐

recommend-type

python使用递归的方式建立二叉树

总结起来,使用递归在Python中建立二叉树涉及创建节点类,定义插入方法,以及遍历方法。递归在解决树形结构的问题时特别有用,因为它能够自然地反映出树的层次结构。理解并熟练掌握这些概念对于进行复杂的数据结构...
recommend-type

实验五 二叉树的基本操作实现

在本实验中,我们将学习二叉树的基本操作,包括二叉树的建立、遍历、结点数统计、深度计算和叶子结点个数统计。 一、实验目的 实验目的旨在熟悉二叉树结点的结构和对二叉树的基本操作。通过本实验,学生将掌握对...
recommend-type

数据结构二叉树的基本操作实验报告

问题描述:采用二叉链表作为存储结构,完成图1的二叉树的建立和遍历操作。 基本要求: (1)基于先序遍历的构造算法。输入是二叉树的先序序列,但必须在其中加入虚结点以示空指针的位置。假设虚结点输入时用空格字符...
recommend-type

关于二叉树的建立遍历查找程序代码

总结起来,这段代码涵盖了二叉树的基本操作,包括建立、后序遍历、层次遍历以及一些辅助操作。通过理解和实现这些功能,我们可以更好地掌握二叉树的特性和应用。然而,查找特定节点的祖先这一功能需要额外的逻辑来...
recommend-type

卫星网络容器仿真平台+TC流量控制+SRS&amp;ffmpeg推流.zip

卫星网络容器仿真平台+TC流量控制+SRS&amp;ffmpeg推流
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。