二叉树链表的基本操作

时间: 2024-01-23 09:13:42 浏览: 29
二叉树链表的基本操作包括以下几个方面: 1. 建立二叉树:根据输入的数据建立一个二叉树,可以采用递归或非递归的方式实现。 2. 遍历二叉树:分别采用前序、中序、后序的遍历方式显示输出二叉树的遍历结果,可以采用递归或非递归的方式实现。 3. 统计二叉树的节点个数:采用递归或非递归的方式实现。 4. 统计二叉树的度为1的节点个数:采用递归或非递归的方式实现。 5. 统计二叉树的度为2的节点个数:采用递归或非递归的方式实现。 6. 统计二叉树的叶子节点个数:采用递归或非递归的方式实现。 7. 计算二叉树的深度:采用递归的方式实现。 8. 复制二叉树:采用递归的方式实现。 9. 删除二叉树:采用递归的方式实现。 下面是一个使用递归方式实现的二叉树基本操作的示例代码: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class BinaryTree: def __init__(self): self.root = None # 建立二叉树 def buildTree(self, vals): def build(i): if i >= len(vals) or vals[i] is None: return None node = TreeNode(vals[i]) node.left = build(2 * i + 1) node.right = build(2 * i + 2) return node self.root = build(0) # 前序遍历 def preorderTraversal(self, node): if not node: return [] return [node.val] + self.preorderTraversal(node.left) + self.preorderTraversal(node.right) # 中序遍历 def inorderTraversal(self, node): if not node: return [] return self.inorderTraversal(node.left) + [node.val] + self.inorderTraversal(node.right) # 后序遍历 def postorderTraversal(self, node): if not node: return [] return self.postorderTraversal(node.left) + self.postorderTraversal(node.right) + [node.val] # 统计节点个数 def countNodes(self, node): if not node: return 0 return 1 + self.countNodes(node.left) + self.countNodes(node.right) # 统计度为1的节点个数 def countDegreeOneNodes(self, node): if not node: return 0 degree = 0 if node.left: degree += 1 if node.right: degree += 1 return (degree == 1) + self.countDegreeOneNodes(node.left) + self.countDegreeOneNodes(node.right) # 统计度为2的节点个数 def countDegreeTwoNodes(self, node): if not node: return 0 degree = 0 if node.left: degree += 1 if node.right: degree += 1 return (degree == 2) + self.countDegreeTwoNodes(node.left) + self.countDegreeTwoNodes(node.right) # 统计叶子节点个数 def countLeafNodes(self, node): if not node: return 0 if not node.left and not node.right: return 1 return self.countLeafNodes(node.left) + self.countLeafNodes(node.right) # 计算深度 def maxDepth(self, node): if not node: return 0 return 1 + max(self.maxDepth(node.left), self.maxDepth(node.right)) # 复制二叉树 def copyTree(self, node): if not node: return None newNode = TreeNode(node.val) newNode.left = self.copyTree(node.left) newNode.right = self.copyTree(node.right) return newNode # 删除二叉树 def deleteTree(self, node): if not node: return self.deleteTree(node.left) self.deleteTree(node.right) node.left = None node.right = None ```

相关推荐

最新推荐

recommend-type

数据结构二叉树的基本操作实验报告

问题描述:采用二叉链表作为存储结构,完成图1的二叉树的建立和遍历操作。 基本要求: (1)基于先序遍历的构造算法。输入是二叉树的先序序列,但必须在其中加入虚结点以示空指针的位置。假设虚结点输入时用空格字符...
recommend-type

数据结构 建立二叉树二叉链表存储结构实现有关操作 实验报告

建立二叉树的二叉链表存储结构实现以下操作(选择其中的两个做) (1)输出二叉树 (2)先序遍历二叉树 (3) 中序遍历二叉树 (4)后序遍历二叉树 (5)层次遍历二叉树
recommend-type

二叉树的操作 二叉树的操作

1.创建以二叉链表作存储结构的二叉树; 2.按前序遍历二叉树; 3.按中序遍历二叉树; 4.按后序遍历二叉树; 5.计算二叉树的单枝结点数; 6.按层次遍历二叉树。
recommend-type

二叉排序树的实现与基本操作

二叉排序树又称二叉查找树。本文主要对二叉排序树的实现与基本操作进行详细介绍,以下代码实现了:1、二叉树的构建;2、二叉树的中、前、后、层序遍历;3、二叉树中结点的最大距离。下面就跟着小编一起来看下吧
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

去除字符串s="ab23cde"中的数字,构成一个新的字符串"abcde"。

可以使用正则表达式来匹配并替换字符串中的数字: ```python import re s = "ab23cde" new_s = re.sub(r'\d+', '', s) print(new_s) # 输出:abcde ``` 其中,`\d` 表示匹配数字,`+` 表示匹配一个或多个数字,`re.sub()` 函数用来替换匹配到的数字为空字符串。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依