设计一个自适应模糊神经网络控制器,实现对y=2/5*X1.^2*cos(4*pi*X2)这个函数进行逼近

时间: 2023-07-23 22:23:52 浏览: 51
好的,我可以为您提供一个简单的 Matlab 示例来实现一个自适应模糊神经网络控制器,以逼近 $y=\frac{2}{5}X_1^2\cos(4\pi X_2)$ 这个函数。 首先,我们需要定义一个模糊神经网络结构。我们可以使用 `genfis1` 函数来自动生成一个基于输入输出数据的模糊系统。以下是一个简单的示例: ```matlab % 生成训练数据 X1 = -1:0.05:1; X2 = -1:0.05:1; [X1, X2] = meshgrid(X1, X2); Y = 2/5 * X1.^2 .* cos(4*pi*X2); % 生成模糊系统 input = [min(X1(:)) max(X1(:)); min(X2(:)) max(X2(:))]; output = [min(Y(:)) max(Y(:))]; fis = genfis1([X1(:), X2(:)], Y(:), 'gbellmf', 'linear', input, output); % 设置训练参数 opt = anfisOptions('InitialFIS', fis, 'EpochNumber', 100, 'DisplayANFISInformation', 0); % 训练模型 fis = anfis([X1(:), X2(:), Y(:)], opt); % 对新数据进行预测 X1_test = -1:0.1:1; X2_test = -1:0.1:1; [X1_test, X2_test] = meshgrid(X1_test, X2_test); Y_pred = evalfis([X1_test(:), X2_test(:)], fis); Y_pred = reshape(Y_pred, size(X1_test)); % 显示结果 surf(X1_test, X2_test, Y_pred); ``` 在这个示例中,我们首先生成了一些训练数据,然后使用 `genfis1` 函数来生成一个基于输入输出数据的模糊系统。我们使用 `anfisOptions` 函数来设置训练参数,然后使用 `anfis` 函数来训练模型。 最后,我们使用 `evalfis` 函数对新数据进行预测,然后将结果以三维图形的形式绘制出来,以便更直观地观察模型的表现。 希望这个简单的示例能对您有所帮助!

相关推荐

将这个代码修改为自适应序列采样的插值方法:import numpy as np import matplotlib.pyplot as plt def gen_data(x1, x2): y_sample = np.sin(np.pi * x1 / 2) + np.cos(np.pi * x1 / 3) y_all = np.sin(np.pi * x2 / 2) + np.cos(np.pi * x2 / 3) return y_sample, y_all def kernel_interpolation(y_sample, x1, sig): gaussian_kernel = lambda x, c, h: np.exp(-(x - x[c]) ** 2 / (2 * (h ** 2))) num = len(y_sample) w = np.zeros(num) int_matrix = np.asmatrix(np.zeros((num, num))) for i in range(num): int_matrix[i, :] = gaussian_kernel(x1, i, sig) w = int_matrix.I * np.asmatrix(y_sample).T return w def kernel_interpolation_rec(w, x1, x2, sig): gkernel = lambda x, xc, h: np.exp(-(x - xc) ** 2 / (2 * (h ** 2))) num = len(x2) y_rec = np.zeros(num) for i in range(num): for k in range(len(w)): y_rec[i] = y_rec[i] + w[k] * gkernel(x2[i], x1[k], sig) return y_rec if __name__ == '__main__': snum = 12 # control point数量 ratio =50 # 总数据点数量:snum*ratio sig = 2 # 核函数宽度 xs = -4 xe = 4 x1 = np.linspace(xs, xe, snum) x2 = np.linspace(xs, xe, (snum - 1) * ratio + 1) y_sample, y_all = gen_data(x1, x2) plt.figure(1) w = kernel_interpolation(y_sample, x1, sig) y_rec = kernel_interpolation_rec(w, x1, x2, sig) plt.plot(x2, y_rec, 'k') plt.plot(x2, y_all, 'r:') plt.ylabel('y') plt.xlabel('x') for i in range(len(x1)): plt.plot(x1[i], y_sample[i], 'go', markerfacecolor='none') plt.legend(labels=['reconstruction', 'original', 'control point'], loc='lower left') plt.title('kernel interpolation:$y=sin(\pi x/2)+cos(\pi x/3)$') plt.show()

最新推荐

recommend-type

自适应线性自抗扰控制器的设计.pdf

关于自抗扰控制的文献,在基于自抗扰控制基础之上采用线性方法,大大减少了算法中的参数,相较于传统的自抗扰控制更有效。
recommend-type

px4-L1自适应控制算法.pdf

本文首先理清了l1 自适应算法的思路,然后,根据算法的实现步骤,对apm 自适应算法的实现做了细致的分析,读者可以加强对apm代码的了解
recommend-type

神经网络自适应滑模控制的不确定机器人轨迹跟踪控制

提出一种针对机器人跟踪控制的神经网络自适应滑模控制策略。该控制方案将神经网络的非线性映射能力与滑模变结构和自适应控制相结合。对于机器人中不确定项,通过RBF网络分别进行自适应补偿,并通过滑模变结构控制器...
recommend-type

永磁直线同步电机自适应非线性滑模控制.pdf

针对永磁直线同步电机(PMLSM)伺服控制系统易受参数变化、外部扰动、非线性摩擦力等不确定性因素的影响,采用了一种自适应非线性滑模控制(ANLSMC)方案.首先,建立了含有不确定性因素的PMLSM动态方程,然后,通过速度作为...
recommend-type

基于自适应模糊PID智能车用直流电机控制器仿真研究

以智能小车的电机控制系统为模型,采用自适应模糊PID控制策略进行控制设计,它克服了简单模糊控制和传统PID控制的一些缺点;利用MATLAB7.0软件中的工具箱进行系统的辅助设计与仿真。仿真结果表明,该系统的动态性能、...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。