试设计一个自适应模糊神经网络控制器,实现对y=2/5*X1.^2*cos(4*pi*X2)函数逼近。要求:自行确定自变量和取值范围。(2)自行确定5个输入和,计算实际输出和期望输出的误差值。

时间: 2024-03-02 07:50:57 浏览: 19
自适应模糊神经网络控制器(ANFIS)是一种结合了模糊逻辑和神经网络的方法,适用于非线性系统建模和控制。以下是一个简单的 ANFIS 控制器设计来逼近函数 y=2/5*X1.^2*cos(4*pi*X2): ```matlab % 定义自变量和取值范围 x1 = linspace(-1, 1, 50); x2 = linspace(-1, 1, 50); [X1, X2] = meshgrid(x1, x2); Y = 2/5*X1.^2.*cos(4*pi*X2); % 定义模糊控制器 fis = genfis2([X1(:), X2(:)], Y(:), 5); % 5 个输入变量 % 训练模糊控制器 epochs = 10; % 迭代次数 options = anfisOptions('InitialFIS', fis, 'EpochNumber', epochs); [trnFIS, trnError, ~, valFIS, valError] = anfis([X1(:), X2(:), Y(:)], options); % 测试模糊控制器 test_x1 = linspace(-1, 1, 20); test_x2 = linspace(-1, 1, 20); [test_X1, test_X2] = meshgrid(test_x1, test_x2); test_Y = 2/5*test_X1.^2.*cos(4*pi*test_X2); test_Y_pred = evalfis([test_X1(:), test_X2(:)], valFIS); % 计算实际输出和期望输出的误差值 test_err = test_Y - test_Y_pred; test_mse = mean(test_err.^2); ``` 代码中,我们首先定义了自变量和取值范围,然后使用 `genfis2` 函数生成模糊控制器。接着,使用 `anfis` 函数训练模糊控制器,并得到训练误差和验证误差。最后,使用 `evalfis` 函数测试模糊控制器,并计算实际输出和期望输出的误差值和均方误差(MSE)。 需要注意的是,模糊控制器的训练需要大量的时间和计算资源,因此在实际应用中需要进行优化和调整。

相关推荐

将这个代码修改为自适应序列采样的插值方法:import numpy as np import matplotlib.pyplot as plt def gen_data(x1, x2): y_sample = np.sin(np.pi * x1 / 2) + np.cos(np.pi * x1 / 3) y_all = np.sin(np.pi * x2 / 2) + np.cos(np.pi * x2 / 3) return y_sample, y_all def kernel_interpolation(y_sample, x1, sig): gaussian_kernel = lambda x, c, h: np.exp(-(x - x[c]) ** 2 / (2 * (h ** 2))) num = len(y_sample) w = np.zeros(num) int_matrix = np.asmatrix(np.zeros((num, num))) for i in range(num): int_matrix[i, :] = gaussian_kernel(x1, i, sig) w = int_matrix.I * np.asmatrix(y_sample).T return w def kernel_interpolation_rec(w, x1, x2, sig): gkernel = lambda x, xc, h: np.exp(-(x - xc) ** 2 / (2 * (h ** 2))) num = len(x2) y_rec = np.zeros(num) for i in range(num): for k in range(len(w)): y_rec[i] = y_rec[i] + w[k] * gkernel(x2[i], x1[k], sig) return y_rec if __name__ == '__main__': snum = 12 # control point数量 ratio =50 # 总数据点数量:snum*ratio sig = 2 # 核函数宽度 xs = -4 xe = 4 x1 = np.linspace(xs, xe, snum) x2 = np.linspace(xs, xe, (snum - 1) * ratio + 1) y_sample, y_all = gen_data(x1, x2) plt.figure(1) w = kernel_interpolation(y_sample, x1, sig) y_rec = kernel_interpolation_rec(w, x1, x2, sig) plt.plot(x2, y_rec, 'k') plt.plot(x2, y_all, 'r:') plt.ylabel('y') plt.xlabel('x') for i in range(len(x1)): plt.plot(x1[i], y_sample[i], 'go', markerfacecolor='none') plt.legend(labels=['reconstruction', 'original', 'control point'], loc='lower left') plt.title('kernel interpolation:$y=sin(\pi x/2)+cos(\pi x/3)$') plt.show()

最新推荐

recommend-type

自适应线性自抗扰控制器的设计.pdf

关于自抗扰控制的文献,在基于自抗扰控制基础之上采用线性方法,大大减少了算法中的参数,相较于传统的自抗扰控制更有效。
recommend-type

px4-L1自适应控制算法.pdf

本文首先理清了l1 自适应算法的思路,然后,根据算法的实现步骤,对apm 自适应算法的实现做了细致的分析,读者可以加强对apm代码的了解
recommend-type

神经网络自适应滑模控制的不确定机器人轨迹跟踪控制

提出一种针对机器人跟踪控制的神经网络自适应滑模控制策略。该控制方案将神经网络的非线性映射能力与滑模变结构和自适应控制相结合。对于机器人中不确定项,通过RBF网络分别进行自适应补偿,并通过滑模变结构控制器...
recommend-type

永磁直线同步电机自适应非线性滑模控制.pdf

针对永磁直线同步电机(PMLSM)伺服控制系统易受参数变化、外部扰动、非线性摩擦力等不确定性因素的影响,采用了一种自适应非线性滑模控制(ANLSMC)方案.首先,建立了含有不确定性因素的PMLSM动态方程,然后,通过速度作为...
recommend-type

基于自适应模糊PID智能车用直流电机控制器仿真研究

以智能小车的电机控制系统为模型,采用自适应模糊PID控制策略进行控制设计,它克服了简单模糊控制和传统PID控制的一些缺点;利用MATLAB7.0软件中的工具箱进行系统的辅助设计与仿真。仿真结果表明,该系统的动态性能、...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。