给出一个tensor为[85,1139]为输入数据集的pytorch的RNN模型进行训练的代码,数据集随机生成
时间: 2023-11-28 13:47:51 浏览: 70
以下是一个基本的RNN模型,可以用于训练一个输入数据为[85, 1139]的数据集:
```python
import torch
import torch.nn as nn
# 定义超参数
input_size = 1139
hidden_size = 512
num_layers = 2
batch_size = 16
seq_length = 85
num_epochs = 10
learning_rate = 0.001
# 随机生成数据集
data = torch.randn(batch_size, seq_length, input_size)
# 定义模型
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.rnn(x, h0)
out = self.fc(out[:, -1, :])
return out
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = RNN(input_size, hidden_size, num_layers).to(device)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i in range(0, data.size(1) - seq_length, seq_length):
inputs = data[:, i:i+seq_length, :]
targets = torch.randn(batch_size, 1)
inputs = inputs.to(device)
targets = targets.to(device)
# 前向传播
outputs = model(inputs)
loss = criterion(outputs, targets)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, data.size(1)-seq_length, loss.item()))
```
这个模型使用了一个两层的RNN,每个RNN层的输出大小为512,使用MSE作为损失函数,使用Adam优化器进行训练。在训练过程中,我们将数据集分成了长度为85的序列,并在每个序列后面添加了一个随机的目标值。
阅读全文