给出一个tensor为[85,1139]为输入数据集的pytorch的RNN代码
时间: 2023-11-28 09:47:18 浏览: 85
以下是一个简单的 PyTorch RNN 模型,用于处理大小为[batch_size, seq_length, input_size]的输入张量,其中batch_size是批量大小,seq_length是序列长度,input_size是输入特征的数量。本例中,我们将输入数据集看作是一个长为85的序列,每个单词用一个长度为1139的向量表示。
```python
import torch
import torch.nn as nn
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x, h):
out, h = self.rnn(x, h)
out = out[:, -1, :]
out = self.fc(out)
return out, h
input_size = 1139
hidden_size = 128
num_layers = 2
output_size = 10
batch_size = 50
seq_length = 85
# 创建一个随机输入张量
input_data = torch.randn(batch_size, seq_length, input_size)
# 创建模型实例
model = RNN(input_size, hidden_size, num_layers, output_size)
# 初始化隐藏状态张量
h0 = torch.zeros(num_layers, batch_size, hidden_size)
# 前向传递
output, h = model(input_data, h0)
print(output.shape) # 输出形状:(batch_size, output_size)
```
阅读全文