> quantile(copulafit4@residuals / copulafit4@sigma, 0.05) Error in h(simpleError(msg, call)) : 在为'quantile'函数选择方法时评估'x'参数出了错: no slot of name "residuals" for this object of class "fitCopula"
时间: 2024-03-13 22:42:35 浏览: 107
Quantile Probability Plot:Quantile Probability Plot-matlab开发
抱歉,我的回答有误。在计算VaR时,需要使用GARCH-Copula模型模拟未来的收益率分布,而不是使用copulafit函数输出的残差和标准差。下面是正确的R代码示例:
首先,我们需要使用GARCH模型对行业指数的收益率进行建模:
```
library(rugarch)
# 定义GARCH模型
spec1 <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),
mean.model = list(armaOrder = c(0, 0), include.mean = TRUE),
distribution.model = "std")
spec2 <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),
mean.model = list(armaOrder = c(0, 0), include.mean = TRUE),
distribution.model = "std")
# 估计GARCH模型
fit1 <- ugarchfit(spec1, data = ret1)
fit2 <- ugarchfit(spec2, data = ret2)
# 提取模型参数
omega1 <- coef(fit1)["omega"]
alpha11 <- coef(fit1)["alpha1"]
beta11 <- coef(fit1)["beta1"]
sigma1 <- sigma(fit1)
omega2 <- coef(fit2)["omega"]
alpha12 <- coef(fit2)["alpha1"]
beta12 <- coef(fit2)["beta1"]
sigma2 <- sigma(fit2)
```
然后,我们可以使用t-Copula拟合联合分布:
```
library(copula)
# 将收益率标准化
u1 <- pnorm(resid1 / sigma1)
u2 <- pnorm(resid2 / sigma2)
# 拟合t-Copula
tcop <- tCopula(param = c(0.5), dim = 2, dispstr = "un", df = 3)
fit.cop <- fitCopula(tcop, cbind(u1, u2))
# 计算Copula参数
cop.param <- fit.cop@fit$par
```
接下来,我们可以使用GARCH-Copula模型模拟未来的收益率分布:
```
# 定义模拟次数
n.sim <- 10000
# 生成随机样本
sim.cop <- rCopula(n.sim, tcop, dim = 2)
# 使用GARCH模型模拟未来收益率
sim.ret1 <- rep(0, n.sim)
sim.ret2 <- rep(0, n.sim)
for (i in 2:n.sim) {
sim.ret1[i] <- rnorm(1, mean = 0, sd = sqrt(omega1 + alpha11 * (sim.ret1[i - 1] ^ 2) + beta11 * sigma1[i - 1] ^ 2))
sim.ret2[i] <- rnorm(1, mean = 0, sd = sqrt(omega2 + alpha12 * (sim.ret2[i - 1] ^ 2) + beta12 * sigma2[i - 1] ^ 2))
}
# 将边缘分布样本和未来收益率结合起来
sim.ret <- cbind(sim.ret1, sim.ret2)
sim.ret <- apply(sim.ret, 2, function(x) qnorm(pt(x, df = 3)))
sim.total.ret <- sim.cop * sim.ret
```
最后,我们可以计算VaR和ES:
```
# 计算VaR和ES
alpha <- 0.05
VaR <- quantile(sim.total.ret, alpha)
ES <- mean(sim.total.ret[sim.total.ret < VaR])
# 输出结果
print(paste0("VaR: ", round(VaR, 4)))
print(paste0("ES: ", round(ES, 4)))
```
以上就是使用GARCH-Copula模型计算VaR和ES的R代码示例。
阅读全文