float t0 = (pMin.x - ray.origin.x) * invDir.x; // 计算沿x轴方向上起点到原点的距离 float t1 = (pMax.x - ray.origin.x) * invDir.x; // 计算沿x轴方向上终点到原点的距离

时间: 2024-02-23 20:55:57 浏览: 117
这段代码是用于计算光线与一个轴向平行的盒子(bounding box)在x轴方向上的交点。 其中,pMin和pMax表示盒子的最小和最大顶点,ray.origin表示光线的起点,invDir表示光线的反向方向。 对于一个与x轴平行的盒子,我们只需要考虑光线在x轴方向上的投影,因此可以将盒子表示为[pMin.x, pMax.x],并且只需要计算光线与x轴上的两个面的交点。 t0表示光线从起点到盒子最小顶点的距离,t1表示光线从起点到盒子最大顶点的距离。由于我们只需要考虑光线的反向方向,因此需要计算invDir.x,即对x轴方向上的光线做一个取反的操作。 如果t0和t1的值都小于0,则表示光线与盒子没有交点;如果t0和t1的值都大于1,则表示光线与盒子的交点在盒子后面;否则,光线与盒子有交点,交点的范围是[t0, t1],可以用这个范围来计算交点的位置。
相关问题

float t0 = (pMin.x - ray.origin.x) * invDir.x;距离是怎么算出来的?

这段代码计算了光线起点到盒子最小顶点沿x轴方向的距离,其实就是计算光线与盒子最小顶点之间的距离。 首先,我们需要计算光线在x轴上的投影,即光线的方向向量在x轴方向上的分量。由于我们需要计算的是光线到盒子最小顶点的距离,因此需要将光线起点到盒子最小顶点的距离投影到x轴上,得到在x轴上的距离。 具体地,假设光线的起点为o,方向向量为d,盒子的最小顶点为pMin,则光线到pMin的距离t可以表示为: t = (pMin.x - o.x) / d.x 其中,pMin.x - o.x表示光线起点到盒子最小顶点的距离,d.x表示光线在x轴方向上的分量。 将t进行一些变形,可以得到上述代码的计算方式: t0 = (pMin.x - ray.origin.x) * invDir.x 其中,ray.origin.x表示光线的起点在x轴上的坐标,invDir.x表示光线在x轴方向上的反向方向(即1/d.x)。 这样,我们就可以计算出光线与盒子在x轴方向上的交点距离了。对于y轴和z轴,同样可以使用类似的方式进行计算。

import numpy as np import matplotlib.pyplot as plt from obspy import read # 读取面波数据并画图。 st = read('MASW_DATA/Sample_Data/*.SAC') dt = st[0].stats.delta data = [] scale = 0.05 dx = 2 plt.figure(figsize=(8, 6)) for i, tr in enumerate(st): d = tr.data data.append(d) t = np.arange(len(d)) * dt plt.plot(t, d*scale+(i+1)*dx, lw=1, color='b') plt.xlabel('Time (s)') plt.ylabel('Offset (m)') plt.tight_layout() plt.savefig('Surface_wave.png') plt.show() # 二维FFT。 d = np.array(data) n = len(d[0]) # m为空间方向的采样点数,m增大可以让FK谱光滑一点,以达到插值效果。 m = len(d[:, 0]) * 5 D = np.zeros((m, n)) D[:len(d[:, 0])] = d # 时间采样率。 fs = 1 / dt # 空间采样率 xs = 1 / dx # 频率 (赫兹)。 f = np.arange(-n//2, n//2) * fs / (n-1) # 波数 (每米)。 k = 2 * np.pi * np.arange(-m//2, m//2) * xs / (m-1) # 二维FFT。 fk = np.fft.fft2(D) # 作图。 pmin = -10 P = abs(np.fft.fftshift(fk)); P /= P.max(); P = 10 * np.log10(P) P2 = abs(fk); P2 /= P2.max(); P2 = 10 * np.log10(P2) plt.figure(figsize=(11, 8)) plt.subplot(221) plt.pcolormesh(f, k, P2, cmap='magma', vmin=pmin, vmax=0) plt.xlabel('Frequency (s$^{-1}$)') plt.ylabel('Wave number (2$\pi$m$^{-1}$)') plt.subplot(222) plt.pcolormesh(f, k, P, cmap='magma', vmin=pmin, vmax=0) plt.plot([f[n//2], f[-1], f[-1], f[n//2], f[n//2]], [k[0], k[0], k[m//2], k[m//2], k[0]], lw=2, ls='--', color='r') plt.xlabel('Frequency (s$^{-1}$)') plt.ylabel('Wave number (m$^{-1}$)') plt.subplot(223) plt.pcolormesh(f[n//2:], k[:m//2], P[:m//2, n//2:], cmap='magma', vmin=pmin, vmax=0) plt.xlabel('Frequency (s$^{-1}$)') plt.ylabel('Wave number (m$^{-1}$)') plt.subplot(224) plt.pcolormesh(f[n//2:], abs(k[:m//2][::-1]), P[:m//2, n//2:][::-1], cmap='magma', vmin=pmin, vmax=0) cbar = plt.colorbar() cbar.set_label(r'FK spectra (dB)') plt.xlim(0, 100) plt.xlabel('Frequency (s$^{-1}$)') plt.ylabel('Wave number (m$^{-1}$)') plt.tight_layout() plt.show()

这段代码主要实现了面波数据的读取和处理,包括画出原始数据的波形图和进行二维FFT后绘制FK谱图。具体步骤如下: 1. 读取面波数据:使用obspy中的read函数读取指定路径下的所有.SAC文件,并将各个通道的数据保存到data列表中。 2. 画出原始数据的波形图:将每个通道的数据与对应的时间轴绘制在同一张图上,用不同的颜色区分不同通道。 3. 进行二维FFT:将原始数据进行二维FFT,得到FK谱,用于分析面波的频率和波数分布情况。 4. 绘制FK谱图:将FK谱进行可视化,绘制四个子图。其中,第一个子图展示了整个FK谱的情况,第二个子图在第一个子图的基础上加入了一个红色方框,表示主要分析区域。第三个子图展示了主要分析区域的上半部分,第四个子图展示了主要分析区域的下半部分。 总的来说,这段代码实现了对面波数据的初步处理和分析,为后续的面波分析提供了基础。
阅读全文

相关推荐

clear all clc N=4; T=24; P=[0.264022994089077,1.95562312037306,2.63516381183144,2.21652342018504,1.33482910725693,0.305198154765538,0.252912636845111,0.780143039749380,0.148933378343076,0.0730329736841870,1.70209730124967,-0.153088615396506,-6.12046904067520,-6.76721474145148,-0.550283713199661,2.91750695774928,1.23877822641917,0.658240442603604,2.50286413519235,3.15040780867548,1.56879091381377,0.285209344673449,0.141254479550278,-0.0651726588870925]; B=binvar(N,T,'full'); Pc=sdpvar(N,T,'full'); Pd=sdpvar(N,T,'full'); SOC=sdpvar(N,T,'full'); st=[ ];%约束条件 %电池 E=5.5;%额定能量 Pbmax=2.75; E0=2.75; Emin=1.1; Emax=4.4; nch=0.95;%储能设备充电效率 ndis=0.97;%储能设备放电效率 Pmax=[2.75;2.75;2.75;2.75];%上限约束 Pmin=[0;0;0;0];%下限约束 E=sdpvar(N,T,'full');%定义实数变量,为混合储能系统能量 for t=1:T st=[st,B(:,t).*Pmin<=Pc(:,t)<=B(:,t).*Pmax]; end for t=1:T st=[st,B(:,t).*Pmin<=Pd(:,t)<=B(:,t).*Pmax]; end for n = 1:N st = [st, E(n,1) == E0 + 0.95*Pc(n,1) - Pd(n,1)/0.97]; end for t = 2:T for n = 1:N st = [st, E(n,t) == E(n,t-1) + 0.95*Pc(n,t) - Pd(n,t)/0.97]; end end for t = 1:T for n = 1:N st = [st, Emin<=E(n,t)<=Emax]; end end % SOC=zeros(N,T); for t=1:T for n = 1:N st=[st,SOC(n,t)==E(n,t)./E]; end end %功率平衡约束 for t=1:T st=[st,sum(Pd(:,t))-sum(Pc(:,t))>=P(t)]; end %目标函数 h2=0.02; h1=1.02; h0=1.96; Q = diag([.02 .02 .02 .02]); C = [1.02 1.02 1.02 1.02]; Objective = 0; for t = 1:T Objective = Objective + SOC(:,t)'*Q*SOC(:,t) + C*SOC(:,t); end %设置求解器 % ops = sdpsettings('verbose',2,'debug',2,'solver','cplex'); ops = sdpsettings('verbose',2,'debug',2,'solver','gurobi'); optimize(st,Objective,ops); Objective= value(Objective); B=value(B); E=value(E); SOC=value(SOC); Pc=value(Pc); Pd=value(Pd);这个程序为什么没有结果

请解释这段程序:%%%%机组组合%%%%; %%%%线性化MILP模型%%%; %%%考虑风电场景、不同电价场景、电动汽车充放电%%% %%%电动汽车数量按照10倍压缩%%%% clear clc %%%%%机组组合数据%%%%%%%%%%%; Ji=10;%机组数量; Time=24;%时间尺度; SS=20;%场景数量; Pmax=[455,455,130,130,162,80,85,55,55,55];%机组最大出力; Pmin=[150,150,20,20,25,20,25,10,10,10];%机组最小出力; a=[1000,970,700,680,450,370,480,660,665,670]; b=[16.19,17.26,16.60,16.50,19.7,22.26,27.74,25.92,27.27,27.79]; c=[0.00048,0.00031,0.002,0.0021,0.00398,0.00712,0.00079,0.00413,0.00222,0.00173]; Ton=[8,8,5,5,6,3,3,1,1,1];%最小开机时间; Toff=[8,8,5,5,6,3,3,1,1,1];%最小停机时间; Tcs=[5,5,4,4,4,2,2,0,0,0];%冷启动时间; Sh=[4500,5000,550,560,900,170,260,30,30,30];%热启动费用; Sc=[9000,10000,1100,1120,1800,340,520,60,60,60];%冷启动费用; T=[8,8,-5,-5,-6,-3,-3,-1,-1,-1];%初始运行状态; Xbefore=zeros(8,10); for t=1:8 for j=1:10 if T(j)+t<=0 Xbefore(t,j)=0; else Xbefore(t,j)=1; end end end Xf=Xbefore(1,:);%初始序列; Xbefore=[zeros(1,10);Xbefore]; PL=[700,750,850,950,1000,1100,1150,1200,1300,1400,1450,1500,1400,1300,1200,1050,1000,1100,1200,1400,1300,1100,900,800];%日负荷; delta_hot=[130,130,60,60,90,40,40,40,40,40];%爬坡速率 delta_cold=[150,150,20,20,25,20,25,10,10,10];%开停机爬坡速率 R=0.1*PL;%备用容量,这里取10%PL; Pf=[89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84,89.84;99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76,99.76;100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100;86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52,86.52;93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54,93.54;85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14,85.14;76.14,76.14,76.14,76.14,76.14,68.36,68.36,68.36,61.72,61.72,61.72,61.72,61.72,61.72,58.32,58.32,58.32,58.76,58.76,58.76;57.72,57.72,57.72,57.72,57.72,42.48,42

最新推荐

recommend-type

C语言找出数组中的特定元素的算法解析

在这种情况下,我们可以省去Max数组,因为它可以从左向右计算,同时与我们的遍历方向一致,这样就可以合并两个过程。 下面是两种解决方案的代码实现: **解决方案1** 使用两个辅助数组`pMin`和`pMax`: - 首先,...
recommend-type

5.8GHz微波接收机电路设计方案

RSU接收机的灵敏度可以计算为Pmin=(-114+4.2+10.5)dBm≈-99dBm&lt;-97dBm。 RSU接收机的动态范围 RSU接收机的动态范围是指以某种方式降低接收机性能的较强带外信号电平与极微弱信号之比。RSU接收机总的三阶互调输入...
recommend-type

Deep-Learning-with-PyTorch-by-Eli-Stevens-Luca-Antiga-Thomas-Viehmann

Deep_Learning_with_PyTorch_by_Eli_Stevens_Luca_Antiga_Thomas_Viehmann
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘

![【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘](https://europe1.discourse-cdn.com/endnote/optimized/2X/a/a18b63333c637eb5d6fafb609a4eff7bd46df6b0_2_1024x391.jpeg) # 摘要 本文综合探讨了ENDNOTE在文献整理和管理中的作用及其高效操作技巧。首先介绍了文献整理的重要性和ENDNOTE软件的简介,随后深入解析了ENDNOTE的基本功能,包括文献信息的导入与管理、引用和参考文献的生成,以及文献搜索与数据库集成。接着,本文详细阐述了ENDNOTE的高效操作技巧,涵