train_data = DataLoader(dataset=training_data,batch_size=batch_size,shuffle=True,drop_last=True),train_data的内容
时间: 2024-05-18 22:12:08 浏览: 154
train_data是一个数据加载器(DataLoader)对象,其中包含了training_data数据集的内容。该数据加载器会将数据集按照batch_size进行分批,每个批次的数据大小为batch_size,同时还会对每个批次进行随机打乱(shuffle=True),以增加模型的泛化能力。由于最后一个批次可能不足batch_size,因此设置了drop_last=True,即在数据不足一个batch_size时,将该批次数据舍弃。
相关问题
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=train_dataset.collate_fn, drop_last=True)
这行代码的作用是创建一个训练数据集的数据加载器,用于按批次加载训练数据。其中,train_dataset是训练数据集,batch_size是每个批次包含的样本数,shuffle=True表示在每个epoch开始时对数据进行随机洗牌,collate_fn是一个用于组合样本的函数,drop_last=True表示如果最后一个批次的样本数不足batch_size,则丢弃该批次。
train_dataset = LegacyPPIDataset(mode='train') valid_dataset = LegacyPPIDataset(mode='valid') test_dataset = LegacyPPIDataset(mode='test') train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate) valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate) n_classes = train_dataset._labels.shape[1] num_feats = train_dataset.features.shape[1]
这段代码是用来加载和处理数据集的。其中`LegacyPPIDataset`是一个自定义的数据集类,用于加载PPID(Protein-Protein Interaction)数据集。`mode`参数指定了数据集的模式,可以是训练集、验证集或测试集。`DataLoader`是一个PyTorch中用于批量处理数据的工具,将数据集分成一批一批的,方便模型训练。`batch_size`参数指定了每个批次的大小。`collate`参数是一个自定义的函数,用于将数据集中的样本转换成模型可以处理的格式。`n_classes`和`num_feats`分别表示类别数和特征数量。这段代码的作用是将数据集加载到内存中,方便模型训练。
阅读全文