C#使用var consumeResult = consumer.Consume(cts.Token)报错local value deserialization error

时间: 2024-06-05 14:12:06 浏览: 222
这个错误通常是由于消费者无法反序列化消息而引起的。可能是因为消息的格式与消费者的预期不同,或者是因为消息本身存在一些无效的内容。你可以尝试打印出消息内容并检查其格式是否正确。如果你无法确定问题所在,可以尝试使用较低级别的消费者API,例如使用`consumer.ConsumeRaw(cts.Token)`方法来获取消息的原始字节数组,以便更好地诊断问题。另外,你还可以尝试更新消费者的配置,例如设置适当的反序列化程序或更改消费者的消息格式。
相关问题

SELECT sd.email, consume_phone phone, hg.group_name group_name, '消费' operatype, COUNT( hs.consume_phone ) AS times, IFNULL(sum(IF(hs.consume_status='+',(hs.consume_amount-hs.consume_gift_amount),-(hs.consume_amount-hs.consume_gift_amount))),0) money FROM qianxun_wash_consume hs LEFT JOIN qianxun_wash_groupcard hg ON hs.consume_phone = hg.group_phone LEFT JOIN sys_dept sd on sd.dept_id=hg.create_dept WHERE hs.consume_type IN ( 200, 220 ) and hs.consume_card_type <> ' ' AND hs.consume_subtract_card != '0' and hs.create_unit='487' GROUP BY consume_phone, hg.group_name ORDER BY times DESC 这个sql怎么优化

对于这个 SQL 查询的优化,可以考虑以下几点: 1. 索引优化:确保相关的列上有适当的索引,以提高查询效率。对于 `hs.consume_phone`、`hg.group_phone`、`hs.create_unit` 等列,可以创建相应的索引。 2. JOIN 优化:可以尝试使用 INNER JOIN 替代 LEFT JOIN,如果没有确切的需要获取 NULL 值的情况。 3. WHERE 条件优化:对于 `hs.consume_type`、`hs.consume_card_type`、`hs.consume_subtract_card` 等条件,可以考虑创建索引以提高查询速度。另外,如果 `hs.create_unit` 的值非常稳定,可以将其提取为变量,避免重复计算。 4. GROUP BY 和 ORDER BY 优化:确保 GROUP BY 和 ORDER BY 子句中的列在查询中有适当的索引。 5. 子查询优化:如果可能,可以将子查询转换为 JOIN 操作,以提高效率。 6. 细化聚合函数:可以将聚合函数中的 IFNULL 函数移动到外部查询中,避免在每一行数据上进行计算。 综上所述,请根据具体情况综合考虑以上优化方法,并在实际环境中进行测试和评估。优化的效果可能因数据库引擎、数据量和数据分布等因素而有所不同。

import threading, Queue item = Oueue .Oueue () def consume () :"u"Ilorpe6neHme oyepenhoro nemeHra (coxmnahmem ero nOABneHMA) unreturn item.get () def consumer () :while True:print consume() def produce(i) : 3aHeceHne HOBoro 3emeHra B KOHTeMHep M onoBemeHne nOTOKOB" item.put (i) pl = threading.Thread(target=consumer, name="t1") p1.setDaemon(True)p2 = threading.Thread(target=consumer, name="t2")p2.setDaemon(True) p1.start() p2.start () produce("ITEM1") produce("ITEM2") produce("ITEM3"produce("ITEM4") pl.join()p2.join ()

这是一个 Python 的多线程程序,其中使用了 Queue 模块来实现线程间通信。程序中定义了一个函数 consume() 用于获取 Queue 中的元素,一个函数 consumer() 不断地调用 consume() 函数来消费 Queue 中的元素。同时,定义了一个函数 produce(i) 用于向 Queue 中添加元素。程序中创建了两个线程 t1 和 t2 分别调用 consumer() 函数,以及主线程不断地调用 produce() 函数向 Queue 中添加元素。程序运行时主线程会等待 t1 和 t2 线程执行完毕后才结束。
阅读全文

相关推荐

介绍一下以下代码的逻辑 # data file path train_raw_path='./data/tianchi_fresh_comp_train_user.csv' train_file_path = './data/preprocessed_train_user.csv' item_file_path='./data/tianchi_fresh_comp_train_item.csv' #offline_train_file_path = './data/ccf_data_revised/ccf_offline_stage1_train.csv' #offline_test_file_path = './data/ccf_data_revised/ccf_offline_stage1_test_revised.csv' # split data path #active_user_offline_data_path = './data/data_split/active_user_offline_record.csv' #active_user_online_data_path = './data/data_split/active_user_online_record.csv' #offline_user_data_path = './data/data_split/offline_user_record.csv' #online_user_data_path = './data/data_split/online_user_record.csv' train_path = './data/data_split/train_data/' train_feature_data_path = train_path + 'features/' train_raw_data_path = train_path + 'raw_data.csv' #train_cleanedraw_data_path=train_path+'cleanedraw_data.csv' train_subraw_data_path=train_path+'subraw_data.csv' train_dataset_path = train_path + 'dataset.csv' train_subdataset_path=train_path+'subdataset.csv' train_raw_online_data_path = train_path + 'raw_online_data.csv' validate_path = './data/data_split/validate_data/' validate_feature_data_path = validate_path + 'features/' validate_raw_data_path = validate_path + 'raw_data.csv' #validate_cleaneraw_data_path=validate_path+'cleanedraw_data.csv' validate_dataset_path = validate_path + 'dataset.csv' validate_raw_online_data_path = validate_path + 'raw_online_data.csv' predict_path = './data/data_split/predict_data/' predict_feature_data_path = predict_path + 'features/' predict_raw_data_path = predict_path + 'raw_data.csv' predict_dataset_path = predict_path + 'dataset.csv' predict_raw_online_data_path = predict_path + 'raw_online_data.csv' # model path model_path = './data/model/model' model_file = '/model' model_dump_file = '/model_dump.txt' model_fmap_file = '/model.fmap' model_feature_importance_file = '/feature_importance.png' model_feature_importance_csv = '/feature_importance.csv' model_train_log = '/train.log' model_params = '/param.json' val_diff_file = '/val_diff.csv' # submission path submission_path = './data/submission/submission' submission_hist_file = '/hist.png' submission_file = '/tianchi_mobile_recommendation_predict.csv' # raw field name user_label = 'user_id' item_label = 'item_id' action_label = 'behavior_type' user_geohash_label='user_geohash' category_label='item_category' action_time_label='time' probability_consumed_label = 'Probability' # global values consume_time_limit = 15 train_feature_start_time = '20141119' train_feature_end_time = '20141217' train_dataset_time = '20141218' #train_dataset_end_time = '20141218' validate_feature_start_time = '20141118' validate_feature_end_time = '20141216' validate_dataset_time = '20141217' #validate_dataset_end_time = '20160514' predict_feature_start_time = '20141120' predict_feature_end_time = '20141218' predict_dataset_time = '20141219' #predict_dataset_end_time = '20160731'

def connect(self): s = self.get_slice() if self.connected: return # increment connect attempt self.stat_collector.incr_connect_attempt(self) if s.is_avaliable(): s.connected_users += 1 self.connected = True print(f'[{int(self.env.now)}] Client_{self.pk} [{self.x}, {self.y}] connected to slice={self.get_slice()} @ {self.base_station}') return True else: self.assign_closest_base_station(exclude=[self.base_station.pk]) if self.base_station is not None and self.get_slice().is_avaliable(): # handover self.stat_collector.incr_handover_count(self) elif self.base_station is not None: # block self.stat_collector.incr_block_count(self) else: pass # uncovered print(f'[{int(self.env.now)}] Client_{self.pk} [{self.x}, {self.y}] connection refused to slice={self.get_slice()} @ {self.base_station}') return False def disconnect(self): if self.connected == False: print(f'[{int(self.env.now)}] Client_{self.pk} [{self.x}, {self.y}] is already disconnected from slice={self.get_slice()} @ {self.base_station}') else: slice = self.get_slice() slice.connected_users -= 1 self.connected = False print(f'[{int(self.env.now)}] Client_{self.pk} [{self.x}, {self.y}] disconnected from slice={self.get_slice()} @ {self.base_station}') return not self.connected def start_consume(self): s = self.get_slice() amount = min(s.get_consumable_share(), self.usage_remaining) # Allocate resource and consume ongoing usage with given bandwidth s.capacity.get(amount) print(f'[{int(self.env.now)}] Client_{self.pk} [{self.x}, {self.y}] gets {amount} usage.') self.last_usage = amount def release_consume(self): s = self.get_slice() # Put the resource back if self.last_usage > 0: # note: s.capacity.put cannot take 0 s.capacity.put(self.last_usage) print(f'[{int(self.env.now)}] Client_{self.pk} [{self.x}, {self.y}] puts back {self.last_usage} usage.') self.total_consume_time += 1 self.total_usage += self.last_usage self.usage_remaining -= self.last_usage self.last_usage = 0中的资源分配

最新推荐

recommend-type

英语四级高频单词、词组、短语.pdf

4. consume:消耗,耗尽,如能源或时间的消耗。 5. split:劈开,分裂,也可用于描述关系破裂。 6. spill:溢出,通常用于液体溢出的情况。 7. slide:滑动,滑落,常用于描述物体平滑移动的状态。 8. bacteria:...
recommend-type

恋练有词纯单词顺序Unit1-Unit30.docx

领域,"account for"解释或占比,"consume"是消费,"consume too much"消耗过多,"consumerism"过度消费,"clientele"是顾客群,"environmental protection"环境保护,"green environment"绿色环境,"sustainable ...
recommend-type

使用httpclient无需证书调用https的示例(java调用https)

接下来,我们将使用这个自定义的`SSLSocketFactory`来创建一个HttpClient实例,并配置它以接受任何证书: ```java import org.apache.http.conn.ssl.SSLSocketFactory; import org.apache....
recommend-type

航空公司客户满意度数据转换与预测分析Power BI案例研究

内容概要:本文档介绍了航空公司的业务分析案例研究,涵盖两个主要部分:a) 使用SSIS进行数据转换,b) 利用RapidMiner进行预测分析。这两个任务旨在通过改善客户满意度来优化业务运营。数据来源包括多个CSV文件,如flight_1.csv、flight_2.csv、type.csv、customer.csv 和 address.csv。第一部分要求学生创建事实表、客户维度表和时间维度表,并描述整个数据转换流程。第二部分则需要利用RapidMiner开发两种不同的模型(如决策树和逻辑回归)来预测客户满意度,并完成详细的报告,其中包括执行摘要、预测分析过程、重要变量解释、分类结果、改进建议和伦理问题讨论。 适合人群:适用于对数据科学和商业分析有一定基础的学生或专业人士。 使用场景及目标:本案例研究用于教学和评估,帮助学员掌握数据转换和预测建模的技术方法,提高客户满意度和业务绩效。目标是通过实际操作加深对相关工具和技术的理解,并能够将其应用于实际业务中。 其他说明:此作业占总评的40%,截止时间为2024年10月25日16:00。
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依