添加注释:print('X:{0}, Y:{1}, Z:{2}'.format(self.__x, self.__y, self.__z))

时间: 2023-11-23 20:19:44 浏览: 25
# 这行代码是用来打印对象的坐标值,使用了字符串格式化的方式 # {0}、{1}、{2} 分别代表 format() 方法后面传入的第一个、第二个、第三个参数 # self.__x、self.__y、self.__z 分别代表对象的三个坐标属性 print('X:{0}, Y:{1}, Z:{2}'.format(self.__x, self.__y, self.__z))
相关问题

这段代码没进 thing1()的原因 class Worker(QtCore.QThread): sinOut = pyqtSignal(str) def __init__(self, parent=None): super(Worker, self).__init__(parent) # 设置工作状态与初始num数值 self.working = True self.num = 0 #def __del__(self): # 线程状态改变与线程终止 #self.working = False #self.wait() def stop(self): #线程状态改变与线程终止 self.working = False self.wait() def run(self): self.working = True while self.working == True: #file_str = 'File index{0}'.format(self.num) self.num += 1 # 发射信号 #self.sinOut.emit(file_str) self.sinOut.emit('1') # 线程休眠2秒 self.msleep(5) class parentWindow(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.main_ui = JQ.Ui_MainWindow() self.main_ui.setupUi(self) self.thread1 = Worker() self.main_ui.pushButton_2.clicked.connect(self.thing1) self.thread1.sinOut.connect(self.printt) def thing1(self): #self.main_ui.pushButton.setEnabled(False) print('9999999999') self.thread1.start() self.thread1.wait() print('123') #self.sleep(2) def printt(self): print('7777') def ok(): print('ok') # def hourstest(): # thread1 = Worker() # thread1.start() # com = JQ.Ui_MainWindow().comboBox_2.currentText() # ser = serial.Serial('com3', 1200, timeout=1) # data = bytes.fromhex( # '68 01 00 20 00 00 00 00 00 34 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 33 F4 16 ') # ser.write(data) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) widget = QtWidgets.QMainWindow() widget = parentWindow() ui = JQ.Ui_MainWindow() # 这是原py中的类,因人而异哦 ui.setupUi(widget) ui.discoverSerial() #串口发现 #ui.pushButton_2.clicked.connect(widget.thing1) widget.show() sys.exit(app.exec_())

在你的代码中,`thing1()` 函数中调用了 `self.thread1.wait()` 方法,这个方法会阻塞主线程,直到子线程执行完毕。因此,如果在 `thing1()` 中调用 `self.thread1.start()` 方法后立即调用 `self.thread1.wait()` 方法,那么子线程就没有机会执行 `run()` 方法,因为主线程一直在等待子线程执行完毕。 解决方法是在 `thing1()` 中删除 `self.thread1.wait()` 方法,让子线程在后台执行。同时,建议在 `Worker` 类的 `__del__()` 方法中加入线程终止的代码,以确保线程能够正确地退出。具体来说,可以将 `__del__()` 方法的注释部分取消注释,代码如下: ```python class Worker(QtCore.QThread): sinOut = pyqtSignal(str) def __init__(self, parent=None): super(Worker, self).__init__(parent) # 设置工作状态与初始num数值 self.working = True self.num = 0 def __del__(self): # 线程状态改变与线程终止 self.working = False self.wait() def stop(self): #线程状态改变与线程终止 self.working = False self.wait() def run(self): self.working = True while self.working == True: #file_str = 'File index{0}'.format(self.num) self.num += 1 # 发射信号 #self.sinOut.emit(file_str) self.sinOut.emit('1') # 线程休眠2秒 self.msleep(5) class parentWindow(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.main_ui = JQ.Ui_MainWindow() self.main_ui.setupUi(self) self.thread1 = Worker() self.main_ui.pushButton_2.clicked.connect(self.thing1) self.thread1.sinOut.connect(self.printt) def thing1(self): #self.main_ui.pushButton.setEnabled(False) print('9999999999') self.thread1.start() #self.thread1.wait() # 删除这行 print('123') #self.sleep(2) def printt(self): print('7777') def ok(): print('ok') # def hourstest(): # thread1 = Worker() # thread1.start() # com = JQ.Ui_MainWindow().comboBox_2.currentText() # ser = serial.Serial('com3', 1200, timeout=1) # data = bytes.fromhex( # '68 01 00 20 00 00 00 00 00 34 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 33 F4 16 ') # ser.write(data) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) #widget = QtWidgets.QMainWindow() # 这行可删除 widget = parentWindow() ui = JQ.Ui_MainWindow() # 这是原py中的类,因人而异哦 ui.setupUi(widget) ui.discoverSerial() #串口发现 #ui.pushButton_2.clicked.connect(widget.thing1) widget.show() sys.exit(app.exec_()) ```

解释一下下面这段代码 def click_pushButton_3(self): # 点击 pushButton_3 触发 框选图像 print("pushButton_3") self.label_1.setGeometry(QRect(20, 20, 400, 320)) hImg, wImg = self.img1.shape[:2] wLabel = self.label_1.width() hLabel = self.label_1.height() x0 = self.label_1.x0 * wImg // wLabel y0 = self.label_1.y0 * hImg // hLabel x1 = self.label_1.x1 * wImg // wLabel y1 = self.label_1.y1 * hImg // hLabel print("hImg,wImg=({},{}), x1,y1=({},{})".format(hImg, wImg, hLabel, wLabel)) print("x0,y0=({},{}), x1,y1=({},{})".format(x0, y0, x1, y1)) self.img2 = np.zeros((self.img1.shape), np.uint8) self.img2[y0:y1, x0:x1, :] = self.img1[y0:y1, x0:x1, :] print(self.img2.shape) self.refreshShow(self.img2, self.label_2) # 刷新显示 return

这是一个使用PyQt5库实现的GUI程序中的一个按钮点击事件的处理函数。具体来说,这个函数是用来实现框选图像的功能的。 函数中的第一行注释解释了这个函数的作用,即点击pushButton_3按钮时,触发框选图像功能。 接下来这个函数会打印出"pushButton_3",以便我们确认这个函数已经被正确调用。然后,它会重新设置label_1的大小和位置,以确保它的大小和位置适合框选。 然后,函数通过获取img1的高度和宽度,以及label_1的高度和宽度,计算出框选区域的坐标。这个坐标是相对于img1的,而不是相对于label_1的。 接下来,函数创建了一个和img1大小相同的黑色图像img2。然后,它将img1中框选的区域复制到img2中。 最后,函数调用refreshShow函数将img2刷新到label_2中,并返回。

相关推荐

import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(32 * 14 * 14, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.pool(x) x = x.view(-1, 32 * 14 * 14) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x class MyDataset(Dataset): def __init__(self, data, target): self.data = data self.target = target def __getitem__(self, index): x = self.data[index] y = self.target[index] return x, y def __len__(self): return len(self.data) # 定义一些超参数 batch_size = 32 learning_rate = 0.001 epochs = 10 # 加载数据集 train_data = torch.randn(1000, 1, 28, 28) print(train_data) train_target = torch.randint(0, 10, (1000,)) print(train_target) train_dataset = MyDataset(train_data, train_target) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # 构建模型 model = ConvNet() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(epochs): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 保存模型 # torch.save(model.state_dict(), 'convnet.pth')

''' 宠物系统 2023.06.08 优化要求: 1、添加企鹅类,根据选择的要领养的宠物类型完成相应操作 2、编写父类宠物类,子类狗类和企鹅类 3、i ''' #父类:宠物类Pet、 class Pet(object): def __init__(self,name='未知',health=100,love=0): self.name=name self.health=health self.love=love def show(self): print('宠物的自白:我叫{},健康值为{},和主人的亲密度为{}。'.format( self.name, self.health, self.love)) #子类Dog class Dog(Pet): count=0 def __init__(self,name='未知',strain='未知',health=100,love=0): super().__init__(name,health,love) self.strain=strain self.count+=1 def show(self): print('宠物的自白:我叫{},是一只{},健康值为{},和主人的亲密度为{}。'.format( self.name,self.strain,self.health,self.love)) #子类Penguin class Penguin(Dog): def __init__(self,name='未知',sex='未知',health=100,love=0): super().__init__(name,health,love) self.sex=sex def show(self): print('宠物的自白:我叫{},性别是{},健康值为{},和主人的亲密度为{}。'.format( self.name,self.sex,self.health,self.love)) dogcount=0 pencount=0 while True: choice=input('需要领养宠物吗?(y/n):') if choice=='y': name = input('请给领养的宠物取名字:') selectpet=input('请选择领养宠物的类型(1:狗子,2:企鹅):') if selectpet=='1': dog=Dog() dog.name=name # dogcount+=1 selectstrain=input('请选择狗子品种(1、拉布拉多,2、柴犬):') if selectstrain=='1': dog.strain='拉布拉多' else: dog.strain='柴犬' dog.show() elif selectpet=='2': pen=Penguin(name) pencount+=1 selectsex=input('请选择企鹅性别(1、Q仔,2、Q妹):') if selectsex=='1': pen.sex='Q仔' else: pen.sex=='Q妹' pen.show() else: print('输入错误,请重新输入!') elif choice=='n': # print("您一共领养了{}只狗子,{}只企鹅。".format(dogcount, pencount)) break else: print('输入错误,请重新输入!') print("您一共领养了{}只狗子,{}只企鹅。".format(dog.count,pencount))

请解释: def GetPhase(self, index, Tstance, Tswing): """Retrieves the phase of an individual leg. NOTE modification from original paper: if ti < -Tswing: ti += Tstride This is to avoid a phase discontinuity if the user selects a Step Length and Velocity combination that causes Tstance > Tswing. :param index: the leg's index, used to identify the required phase lag :param Tstance: the current user-specified stance period :param Tswing: the swing period (constant, class member) :return: Leg Phase, and StanceSwing (bool) to indicate whether leg is in stance or swing mode """ StanceSwing = STANCE Sw_phase = 0.0 Tstride = Tstance + Tswing ti = self.Get_ti(index, Tstride) # NOTE: PAPER WAS MISSING THIS LOGIC!! if ti < -Tswing: ti += Tstride # STANCE if ti >= 0.0 and ti <= Tstance: StanceSwing = STANCE if Tstance == 0.0: Stnphase = 0.0 else: Stnphase = ti / float(Tstance) if index == self.ref_idx: # print("STANCE REF: {}".format(Stnphase)) self.StanceSwing = StanceSwing return Stnphase, StanceSwing # SWING elif ti >= -Tswing and ti < 0.0: StanceSwing = SWING Sw_phase = (ti + Tswing) / Tswing elif ti > Tstance and ti <= Tstride: StanceSwing = SWING Sw_phase = (ti - Tstance) / Tswing # Touchdown at End of Swing if Sw_phase >= 1.0: Sw_phase = 1.0 if index == self.ref_idx: # print("SWING REF: {}".format(Sw_phase)) self.StanceSwing = StanceSwing self.SwRef = Sw_phase # REF Touchdown at End of Swing if self.SwRef >= 0.999: self.TD = True # else: # self.TD = False return Sw_phase, StanceSwing

最新推荐

recommend-type

####这是一篇对python的详细解析

python
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。