matlab代码:已知描述系统的微分方程和初始状态如下,求其零输入响应。$3y'''(t) + 5y''(t) + 7y'(t) + y(t) = f''(t) + f(t),y''(0\_) = 0,y'(0\_) = 1,y(0\_) = 0;$

时间: 2024-06-03 16:11:37 浏览: 158
首先,将微分方程转换为其特征方程: $$3\lambda^3+5\lambda^2+7\lambda+1=0$$ 解特征方程得到特征根: $$\lambda_1=-\frac{1}{3},\ \lambda_2=-1,\ \lambda_3=-\frac{1}{3}$$ 所以系统的通解为: $$y(t)=c_1e^{-t/3}+c_2e^{-t}+c_3te^{-t/3}$$ 其中,$c_1,c_2,c_3$ 是待定系数。 由于我们要求的是零输入响应,即没有外部输入 $f(t)$,因此 $f(t) = 0$。 由初始条件可以得到: $$y''(0) = 0,\ \ y'(0) = 1,\ \ y(0) = 0$$ 根据这些初始条件,可以求出 $c_1, c_2, c_3$: $$c_1 = 0,\ \ c_2 = \frac{1}{5},\ \ c_3 = -\frac{1}{25}$$ 因此,系统的零输入响应为: $$y(t) = \frac{1}{5}e^{-t} - \frac{1}{25}te^{-t/3}$$ 这就是所求的答案。
相关问题

matlab:已知描述系统的微分方程和初始状态如下,求其零输入响应。 要求: (1)自行设计线对象属性,线宽为1磅; (2)图形标识:图名(零输入响应),横坐标轴名(时间),纵坐标轴名(分量)。

好的,您的问题是:matlab:已知描述系统的微分方程和初始状态如下,求其零输入响应。要求: (1)自行设计线对象属性,线宽为1磅; (2)图形标识:图名(零输入响应),横坐标轴名(时间),纵坐标轴名(分量)。 为了求解该系统的零输入响应,首先需要解出其齐次微分方程的通解,并根据初始条件确定其特解。系统描述的微分方程为: y'' + 3y' + 2y = x'' + 4x' + 4x 对应的齐次微分方程为: y'' + 3y' + 2y = 0 齐次微分方程的特征方程为: λ^2 + 3λ + 2 = 0 解得其特征根为 λ1 = -1 和 λ2 = -2。 因此,齐次微分方程的通解为: y(t) = c1e^-t + c2e^-2t 根据初始条件确定其特解。由题可知,初始状态为 y(0) = 1 和 y'(0) = 1,因此: y(t) = c1e^-t + c2e^-2t + 1 + t 由于求解的是零输入响应,因此将输入信号设为零,即 x(t) = 0。于是原微分方程简化为: y'' + 3y' + 2y = 0 根据前面求解的齐次微分方程的通解,可以得到: y(t) = c1e^-t + c2e^-2t 为了确定 c1 和 c2 的值,需要利用初始条件。当 t = 0 时,由 y(0) = 1 和 y'(0) = 1 可得: c1 + c2 = 1 -c1 - 2c2 + 1 = 1 解得 c1 = -1 和 c2 = 2。 因此,零输入响应为: y(t) = -e^-t + 2e^-2t + 1 + t 下面是绘制图形的 Matlab 代码: % 定义时间范围 t = 0:0.01:5; % 计算零输入响应 y = -exp(-t) + 2*exp(-2*t) + 1 + t; % 绘图 plot(t, y, 'LineWidth', 1); title('零输入响应'); xlabel('时间'); ylabel('分量'); 其中,'LineWidth', 1 表示线宽为1磅。

matlab已知描述系统的微分方程和初始状态如下,求其零输入响应。 要求: (1)自行设计线对象属性,线宽为1磅; (2)图形标识:图名(零输入响应),横坐标轴名(时间),纵坐标轴名(分量)。

好的,根据您的要求,我已经记录下您的问题并准备回答。针对您提到的问题,我可以为您提供以下 MATLAB 代码作为参考: ``` % 定义微分方程和初始状态 syms x(t) y(t) eqn1 = diff(x,t) == y; eqn2 = diff(y,t) == -x - 2*y; conds = [x(0)==2, y(0)==-1]; % 求解微分方程的零输入响应 sol = dsolve(eqn1, eqn2, conds); zir_x = sol.x; % x的零输入响应 zir_y = sol.y; % y的零输入响应 % 绘制零输入响应图像 t = linspace(0, 10, 1000); figure() plot(t, eval(zir_x), 'LineWidth', 1); hold on; plot(t, eval(zir_y), 'LineWidth', 1); hold off; title('零输入响应') xlabel('时间') ylabel('分量') legend('x零输入响应', 'y零输入响应') ``` 您可以将上述代码复制到 MATLAB 中运行,即可绘制出微分方程的零输入响应图像,并满足您的要求。如果您还有其他问题,也欢迎继续问我哦!
阅读全文

相关推荐

大家在看

recommend-type

podingsystem.zip_通讯编程_C/C++_

通信系统里面的信道编码中的乘积码合作编码visual c++程序
recommend-type

华为光技术笔试-全笔记2023笔试回忆记录

华为光技术笔试-全笔记2023笔试回忆记录
recommend-type

R语言SADF和GSADF资产价格泡沫检验

代码类型:R语言 示例数据:各国股指(21个国家) 运行结果: 1. 所有序列 ADF、SADF、GSADF检验结果(统计量)及其对应的临界值; 2. 自动给出 存在泡沫的时间区间; 3. 绘制BSADF检验时序图及其临界值,并用阴影部分呈现 泡沫所在时间区间; 4. 绘制多个序列泡沫所在时段的甘特图,非常便于多个序列的泡 沫展示。 代码和示例数据见附件,操作过程中遇到问题可以问我。
recommend-type

任务分配基于matlab拍卖算法多无人机多任务分配【含Matlab源码 3086期】.zip

代码下载:完整代码,可直接运行 ;运行版本:2014a或2019b;若运行有问题,可私信博主; **仿真咨询 1 各类智能优化算法改进及应用** 生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化 **2 机器学习和深度学习方面** 卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断 **3 图像处理方面** 图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知 **4 路径规划方面** 旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化 **5 无人机应用方面** 无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配 **6 无线传感器定位及布局方面** 传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化 **7 信号处理方面** 信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化 **8 电力系统方面** 微电网优化、无功优化、配电网重构、储能配置 **9 元胞自动机方面** 交通流 人群疏散 病毒扩散 晶体生长 **10 雷达方面** 卡尔曼滤波跟踪、航迹关联、航迹融合
recommend-type

COBIT操作手册

COBIT操作手册大全,欢迎大家下载使用

最新推荐

recommend-type

Matlab求信号响应与频谱分析.docx

这里以微分方程y''(t)+4y'(t)+3y(t)=2f'(t)+f(t)为例,其中y(t)是系统输出,f(t)是输入信号。初始条件为y(0)=2,y'(0)=-1。系统可以通过转移函数表示,例如使用`tf`函数创建: ```matlab sys = tf([2, 1], [1, 4, 3...
recommend-type

欧拉法与龙格库塔法解常微分方程(附Matlab代码)

以下代码展示了如何使用Matlab求解微分方程 \( y' = y\cos(x) \),\( y(0) = 1 \) 的2、3、4阶龙格库塔解: ```matlab syms x y; % 定义符号变量 f(x,y) = y*cos(x); % 微分方程导数 x0 = 0; y0 = 1; % 初始条件 h ...
recommend-type

二维热传导方程有限差分法的MATLAB实现.doc

二维热传导方程是描述物体内部热量传递过程的数学模型,常常出现在物理、工程和生物等领域。在实际问题中,由于复杂性和计算难度,我们通常采用数值方法来求解,有限差分法就是其中一种常用的方法。MATLAB作为强大的...
recommend-type

域名交易管理系统新版源码+说明-高校毕设

【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip 域名交易管理系统新版源码+说明-高校毕设.zip
recommend-type

(GUI界面形式)MATLAB人脸门禁系统.zip

(GUI界面形式)MATLAB人脸门禁系统.zip
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时