logistic回归和sigmoid函数
时间: 2023-05-31 13:19:51 浏览: 117
### 回答1:
Logistic回归是一种二分类算法,它通过将线性回归的输出值通过sigmoid函数映射到和1之间,来预测样本属于哪一类。sigmoid函数是一种S形函数,它将任意实数映射到和1之间,具有良好的可导性和单调性,常用于分类问题中。在Logistic回归中,sigmoid函数的输入是线性回归的输出,输出值表示样本属于正类的概率。
### 回答2:
Logistic回归是一种经典的用于分类问题的线性模型。在二元分类问题中,Logistic回归尝试通过对每个样本的特征进行加权求和,得到一个输出值,然后用Sigmoid函数将输出值压缩至0到1之间的概率值。在多元分类问题中,Logistic回归将每个样本作为一个向量,每个向量有多个特征,然后针对每个分类建立一个线性分类模型,并运用Sigmoid函数将输出值转换为概率值,最后选择概率值最大的分类作为预测结果。
Sigmoid函数是一种常用的激活函数,它的数学表达式是1/(1+e^-x)。Sigmoid函数的特点是输出值经过转换之后,总是落在0到1之间,这方便了输出值的解释为概率值。Sigmoid函数的导数是其本身的乘以(1-它本身),这意味着Sigmoid函数在退化时会顺利地衰减输出值,这与机器学习中常用的梯度下降算法有重要关系。
在Logistic回归模型中,Sigmoid函数的输出表示分为某个类别的概率值,所以Logistic回归模型中的参数估计方法需要使用最大似然估计法,利用训练数据来优化参数以达到对未观察到数据的良好预测效果。在模型训练过程中,通常需要对Sigmoid函数的输出值进行阈值设定,以决定样本分类的阈值。
总之,Logistic回归和Sigmoid函数是机器学习中常用的分类模型和激活函数。它们的应用方便且易于理解,但也存在一些问题,例如数据极度不平衡、特征不够充分等限制,需要在实际应用中考虑和解决。
### 回答3:
Logistic 回归是一种二元分类算法,它可以将实数值输入映射为指定类别的概率。这种算法通常被用于预测离散类别的输出,例如判断某件事情的结果是“是”或“否”、“通过”或“未通过”等。Logistic 回归的核心思想是,它计算出了一个样本被分类为一类的概率,并且把这个概率映射到一个函数上。这个函数就是 Sigmoid 函数。
Sigmoid 函数也被称为 logistic 函数,它是一个最常用的激活函数之一。该函数在机器学习中的应用非常广泛,尤其是在神经网络中。Sigmoid 函数的定义式为 y = 1/ (1+ e^(-x))。该函数为 S 型曲线,它的取值范围在(0,1)之间。在二元分类中,Sigmoid 函数通常是将概率映射到(0,1)之间的标准函数。
Logistic 回归中 Sigmoid 函数的作用是将线性方程的输出(即加权和在一个给定激活函数条件下的总和)变换到0和1之间,从而计算出预测概率值。这个预测概率值将被用于分类结果的判断。
总的来说,Logistic 回归和 Sigmoid 函数是两个密不可分的概念,它们一起构成了二元分类算法在机器学习中的基础。Logistic 回归利用 Sigmoid 函数来将线性方程的输出变换成预测概率值,并最终完成分类任务。在实际应用中,这种算法可以广泛应用于电子商务、银行、医疗和其他领域的分类问题中,以提高业务效率和准确性。
阅读全文