def median_target(var): temp = data[data[var].notnull()] temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index() return tempdata.loc[(data['Outcome'] == 0 ) & (data['Insulin'].isnull()), 'Insulin'] = 102.5 data.loc[(data['Outcome'] == 1 ) & (data['Insulin'].isnull()), 'Insulin'] = 169.5
时间: 2023-10-07 09:03:59 浏览: 106
这段代码实现了一个函数 `median_target` 和两行代码用于填补数据集中 `Insulin` 列中的缺失值。
函数 `median_target` 的作用是计算数据集中某个变量 `var` 在不同 `Outcome` 下的中位数,并返回一个包含 `Outcome` 和中位数的数据框。其中:
- `data[var].notnull()` 这个条件用于过滤掉 `var` 列中的缺失值;
- `[[var, 'Outcome']]` 选择了 `var` 和 `Outcome` 两列;
- `groupby(['Outcome'])[[var]].median()` 将数据按照 `Outcome` 分组,然后计算每组中 `var` 列的中位数;
- `reset_index()` 用于重置索引,使得返回的数据框包含 `Outcome` 和中位数两列。
接下来两行代码用于填补数据集中的缺失值,其中:
- `data.loc[(data['Outcome'] == 0 ) & (data['Insulin'].isnull()), 'Insulin'] = 102.5` 表示将 `Outcome` 为 0 且 `Insulin` 列为空的行填充为 102.5;
- `data.loc[(data['Outcome'] == 1 ) & (data['Insulin'].isnull()), 'Insulin'] = 169.5` 表示将 `Outcome` 为 1 且 `Insulin` 列为空的行填充为 169.5。
相关问题
def median_target(var): temp = data[data[var].notnull()] temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index() return temp
这是一个 Python 函数,用于计算指定变量在不同分类情况下的中位数。
函数名为 median_target,接收一个参数 var,表示要计算中位数的变量名。
函数中,首先使用 data[data[var].notnull()] 过滤掉 var 变量为空的行,然后使用 [[var, 'Outcome']] 选择 var 变量和分类变量 Outcome 两列。接着使用 groupby(['Outcome'])[[var]].median().reset_index() 对数据进行分组计算,分组依据为 Outcome 变量,计算的统计量为 var 变量的中位数。最后返回计算结果。
该函数可能是用于数据分析和特征工程中,用于计算不同分类情况下某个变量的中位数,以帮助挖掘变量与分类变量之间的关系。
function median_target(var) { temp = data[data[var].notnull()]; temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index(); return temp; } data.loc[(data['Outcome'] == 0) & (data['Insulin'].isnull()), 'Insulin'] = 102.5; data.loc[(data['Outcome'] == 1) & (data['Insulin'].isnull()), 'Insulin'] = 169.5; data.loc[(data['Outcome'] == 0) & (data['Glucose'].isnull()), 'Glucose'] = 107; data.loc[(data['Outcome'] == 1) & (data['Glucose'].isnull()), 'Glucose'] = 1; data.loc[(data['Outcome'] == 0) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 27; data.loc[(data['Outcome'] == 1) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 32; data.loc[(data['Outcome'] == 0) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 70; data.loc[(data['Outcome'] == 1) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 74.5; data.loc[(data['Outcome'] == 0) & (data['BMI'].isnull()), 'BMI'] = 30.1; data.loc[(data['Outcome'] == 1) & (data['BMI'].isnull()), 'BMI'] = 34.3; target_col = ["Outcome"]; cat_cols = data.nunique()[data.nunique() < 12].keys().tolist(); cat_cols = [x for x in cat_cols]; num_cols = [x for x in data.columns if x not in cat_cols + target_col]; bin_cols = data.nunique()[data.nunique() == 2].keys().tolist(); multi_cols = [i for i in cat_cols if i in bin_cols]; le = LabelEncoder(); for i in bin_cols: data[i] = le.fit_transform(data[i]); data = pd.get_dummies(data=data, columns=multi_cols); std = StandardScaler(); scaled = std.fit_transform(data[num_cols]); scaled = pd.DataFrame(scaled, columns=num_cols); df_data_og = data.copy(); data = data.drop(columns=num_cols, axis=1); data = data.merge(scaled, left_index=True, right_index=True, how='left'); X = data.drop('Outcome', axis=1); y = data['Outcome']; X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1); y_train = to_categorical(y_train); y_test = to_categorical(y_test);将这段代码添加注释
# 导入必要的库
import pandas as pd
from sklearn.preprocessing import LabelEncoder, StandardScaler
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split
# 定义函数,返回每个特征在不同结果下的中位数
def median_target(var):
temp = data[data[var].notnull()]
temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index()
return temp
# 将缺失值填充为中位数
data.loc[(data['Outcome'] == 0) & (data['Insulin'].isnull()), 'Insulin'] = 102.5
data.loc[(data['Outcome'] == 1) & (data['Insulin'].isnull()), 'Insulin'] = 169.5
data.loc[(data['Outcome'] == 0) & (data['Glucose'].isnull()), 'Glucose'] = 107
data.loc[(data['Outcome'] == 1) & (data['Glucose'].isnull()), 'Glucose'] = 1
data.loc[(data['Outcome'] == 0) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 27
data.loc[(data['Outcome'] == 1) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 32
data.loc[(data['Outcome'] == 0) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 70
data.loc[(data['Outcome'] == 1) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 74.5
data.loc[(data['Outcome'] == 0) & (data['BMI'].isnull()), 'BMI'] = 30.1
data.loc[(data['Outcome'] == 1) & (data['BMI'].isnull()), 'BMI'] = 34.3
# 将数据进行分类处理
target_col = ["Outcome"]
cat_cols = data.nunique()[data.nunique() < 12].keys().tolist()
cat_cols = [x for x in cat_cols]
num_cols = [x for x in data.columns if x not in cat_cols + target_col]
bin_cols = data.nunique()[data.nunique() == 2].keys().tolist()
multi_cols = [i for i in cat_cols if i in bin_cols]
# 对二分类特征进行编码
le = LabelEncoder()
for i in bin_cols:
data[i] = le.fit_transform(data[i])
# 将分类特征进行独热编码
data = pd.get_dummies(data=data, columns=multi_cols)
# 对数值特征进行标准化
std = StandardScaler()
scaled = std.fit_transform(data[num_cols])
scaled = pd.DataFrame(scaled, columns=num_cols)
# 将数据进行合并
df_data_og = data.copy()
data = data.drop(columns=num_cols, axis=1)
data = data.merge(scaled, left_index=True, right_index=True, how='left')
# 划分训练集和测试集,对标签进行独热编码
X = data.drop('Outcome', axis=1)
y = data['Outcome']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
阅读全文