MATLAB中用fibonacci数列验证极限
时间: 2024-11-20 19:34:51 浏览: 6
利用Matlab程序计算斐波那契数列的前一百项
在MATLAB中,我们可以利用循环结构和条件判断来生成斐波那契数列,并通过迭代计算来验证其渐近性质,即当n趋向于无穷大时,Fibonacci数列的前两个数(通常设定为0和1)的比例会越来越接近黄金分割比例(约为1.6180339887)。这里是一个简单的例子:
```matlab
function fibonacci_limit(n)
% 初始化前两个斐波那契数
fibs = [0, 1];
% 循环计算并存储斐波那契数列直到n
for i = 3:n
fibs(i) = fibs(i-1) + fibs(i-2);
end
% 计算并打印前两个数的比例,逼近黄金分割
ratio = fibs(end) / fibs(end-1);
fprintf('The ratio of the last two Fibonacci numbers (F%dx and F%dx) is approximately %.4f.\n', n, n-1, ratio);
end
% 调用函数并指定较大的n值来观察极限情况
fibonacci_limit(100); % 可以更换为更大的数字来验证极限
```
运行这个函数,你会看到随着n的增加,Fibonacci数列相邻两项的比值逐渐趋近于黄金分割比例。
阅读全文