pandas groupby用法 sum
时间: 2023-10-23 08:08:53 浏览: 161
pandas中的groupby方法可以用来对数据进行分组并进行聚合操作。其中,sum函数可以用于求和。
首先,我们需要创建一个DataFrame对象作为示例数据:
```python
import pandas as pd
data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'two', 'two', 'one', 'two', 'one'],
'C': [1, 2, 3, 4, 5, 6, 7, 8],
'D': [9, 10, 11, 12, 13, 14, 15, 16]}
df = pd.DataFrame(data)
```
现在我们有一个包含'A'、'B'、'C'和'D'四列的DataFrame对象。我们可以使用groupby方法对'A'列进行分组,并使用sum函数对'C'和'D'列进行求和:
```python
grouped = df.groupby('A').sum()
```
上述代码将根据'A'列对DataFrame进行分组,并对'C'和'D'列进行求和。结果将返回一个新的DataFrame对象,其中包含按照'A'列分组后,'C'和'D'列求和的结果。
你可以通过打印grouped来查看结果:
```python
print(grouped)
```
输出结果为:
```
C D
A
bar 12 36
foo 16 48
```
这样就完成了使用pandas的groupby方法和sum函数对数据进行分组和求和的操作。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)