基于NLP的语音识别实践案例有很多,这里我介绍一个基于深度学习的语音情感识别案例。代码实现
时间: 2024-02-28 16:57:27 浏览: 135
Audio-feature-extraction:使用深度学习策略从语音中进行情感识别
这里我以Python为例,介绍一个基于深度学习的语音情感识别的代码实现,使用了Keras框架和Librosa库。
首先,需要安装Keras和Librosa库。在命令行中输入以下命令:
```
pip install keras
pip install librosa
```
然后,我们需要加载数据集、提取MFCC特征、建立模型,训练模型和评估模型等一系列操作。下面是完整的代码实现:
```python
import os
import random
import numpy as np
import librosa
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from sklearn.model_selection import train_test_split
# 定义数据集路径和情感类别
DATASET_PATH = "path/to/dataset"
CATEGORIES = ["angry", "disgust", "fear", "happy", "neutral", "sad", "surprise"]
# 定义MFCC参数
NUM_MFCC = 40
MAX_LEN = 174
# 加载数据集
def load_data():
mfccs = []
labels = []
for category in CATEGORIES:
category_path = os.path.join(DATASET_PATH, category)
for filename in os.listdir(category_path):
filepath = os.path.join(category_path, filename)
signal, sr = librosa.load(filepath, sr=22050)
mfcc = librosa.feature.mfcc(signal, sr=sr, n_mfcc=NUM_MFCC)
mfcc = np.pad(mfcc, ((0, 0), (0, MAX_LEN - len(mfcc[0]))), mode='constant')
mfccs.append(mfcc)
labels.append(category)
return mfccs, labels
# 对标签进行one-hot编码
def encode_labels(labels):
classes = set(labels)
classes_dict = {}
for i, c in enumerate(classes):
classes_dict[c] = i
encoded_labels = np.array([classes_dict[label] for label in labels])
encoded_labels = to_categorical(encoded_labels, len(classes))
return encoded_labels
# 建立模型
def build_model(input_shape, num_classes):
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D((3, 3), strides=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((3, 3), strides=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((3, 3), strides=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(num_classes, activation='softmax'))
return model
# 训练模型
def train_model(X_train, X_test, y_train, y_test, input_shape, num_classes):
model = build_model(input_shape, num_classes)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, batch_size=32, epochs=100, validation_data=(X_test, y_test))
return model
# 评估模型
def evaluate_model(model, X_test, y_test):
score = model.evaluate(X_test, y_test)
print(f"Test Accuracy: {score[1]}")
# 加载数据集
mfccs, labels = load_data()
# 对标签进行one-hot编码
encoded_labels = encode_labels(labels)
# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(np.array(mfccs), encoded_labels, test_size=0.2, random_state=42)
# 调整输入数据的维度
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2], 1)
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2], 1)
# 训练和评估模型
model = train_model(X_train, X_test, y_train, y_test, (X_train.shape[1], X_train.shape[2], 1), len(CATEGORIES))
evaluate_model(model, X_test, y_test)
```
以上代码实现了一个简单的语音情感识别模型,使用了卷积神经网络(CNN)。模型训练完毕后,可以通过evaluate_model函数评估模型的准确率。
阅读全文