for i in range(mats.shape[0]): r = Rotation.from_dcm(mats[i])

时间: 2024-03-01 19:50:33 浏览: 140
如果你使用的是 Scipy 1.7.3 版本,则无法使用 `from_dcm` 方法创建旋转对象,因为该方法在 Scipy 1.7.3 版本中已被删除。替代方法是使用 `from_matrix` 方法,该方法与 `from_dcm` 方法类似,只需将方向余弦矩阵作为参数传递即可。下面是将 `from_dcm` 方法替换为 `from_matrix` 方法的示例代码: ```python import numpy as np from scipy.spatial.transform import Rotation # 创建旋转矩阵数组 mats = np.array([ [[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[0, -1, 0], [1, 0, 0], [0, 0, 1]], [[-1, 0, 0], [0, -1, 0], [0, 0, 1]] ]) # 使用 from_matrix 方法创建旋转对象 rotations = [Rotation.from_matrix(m) for m in mats] # 打印旋转矩阵 for r in rotations: print(r.as_matrix()) ``` 在这个例子中,我们创建了一个旋转矩阵数组 `mats`,其中有三个旋转矩阵。然后,我们使用列表推导式和 `from_matrix` 方法将每个旋转矩阵转换为一个旋转对象 `rotations`。最后,我们打印每个旋转对象对应的旋转矩阵。
相关问题

def df2csv(df,fname,mats=[],sep=','): # 只追加前5列的数据,最后的data部分单独追加 if len(df.columns) <= 0: return Nd = len(df.columns) Nd_1 = Nd - 1 formats = mats[:] Nf = len(formats) # 确保对每个列都有对应的格式 if Nf < Nd: for ii in range(Nf,Nd): coltype = df[df.columns[ii]].dtype ff = '%s' if coltype == np.int64: ff = '%d' elif coltype == np.float64: ff = '%f' formats.append(ff) fh=open(fname,'w') fh.write(','.join(df.columns) + '\n') for row in df.itertuples(index=False): ss = '' for ii in range(Nd): if ii==Nd_1: # 因为原本的data数据里面有非常多的逗号(,)会影响切割csv的判断,所以我们在data前面添加双引号, # 同时data内部的"可能影响整体的判定,所以将单个双引号替换为2个双引号,只保留其作为单纯双引号的意义 ss += "\""+row[ii].replace("\"","\"\"")+"\"" continue ss += formats[ii] % row[ii] # ss += str(row[ii]) if ii < Nd_1: ss += sep fh.write(ss+'\n') fh.close()

这是一个Python函数,函数名称为df2csv。它有四个参数,分别为df、fname、mats和sep。 df代表一个称为DataFrame的数据结构,通常由pandas模块生成。fname是一个字符串,代表输出的CSV文件名。mats是一个列表,包含了在输出的CSV文件中作为标题的字符串。sep是一个分隔符,通常是逗号,用来分隔输出的每一列数据。 这个函数的作用是将一个DataFrame结构中的数据输出为CSV文件。输出的文件中,每行代表一个DataFrame中的数据行,每列代表一个DataFrame中的数据列。如果在调用函数时提供了mats参数,则输出的CSV文件中的第一行是这个列表中的字符串值。如果不提供mats参数,则输出不包含标题行。输出文件的分隔符由sep参数指定,如果不提供sep参数,则默认使用逗号作为分隔符。

float* get_hog_feature(cv::Mat img) { cv::HOGDescriptor hog = cv::HOGDescriptor(cvSize(20, 20), cvSize(10, 10), cvSize(5, 5), cvSize(5, 5), 9); cv::resize(img, img, cv::Size(30, 30), (0, 0), (0, 0), cv::INTER_LINEAR); std::vector<float> descriptors; // float *descriptors; hog.compute(img, descriptors, cv::Size(20, 20), cv::Size(0, 0)); float *feature_float = (float*)malloc(descriptors.size() * sizeof(float)); assert(feature_float); for (int i = 0; i < 128; i++) { feature_float[i] = descriptors[i * 2]; } return feature_float; } bool getRectsHogFeature(const cv::Mat& img) { std::vector<cv::Mat> mats; int feature_dim = 128; for (DETECTION_ROW& dbox : d) { cv::Rect rc = cv::Rect(int(dbox.tlwh(0)), int(dbox.tlwh(1)), int(dbox.tlwh(2)), int(dbox.tlwh(3))); rc.x = (rc.x >= 0 ? rc.x : 0); rc.y = (rc.y >= 0 ? rc.y : 0); rc.width = (rc.x + rc.width <= img.cols ? rc.width : (img.cols - rc.x)); rc.height = (rc.y + rc.height <= img.rows ? rc.height : (img.rows - rc.y)); cv::Mat mattmp = img(rc).clone(); //cv::resize(mattmp, mattmp, cv::Size(64, 128)); float *feature_float = get_hog_feature(mattmp); for (int i=0;i<feature_dim;i++) { dbox.feature[i] = feature_float[i]; } } return true; } 请解析这段代码

这段代码主要是关于计算图像的HOG特征。下面是对代码的解析: 1. `get_hog_feature` 函数是用来计算输入图像的HOG特征的。它接受一个 `cv::Mat` 类型的图像作为输入参数,返回一个 `float*` 类型的特征数组。 2. 在函数内部,首先创建了一个 `cv::HOGDescriptor` 对象 `hog`,并指定了它的参数,包括窗口大小、块大小、块步长和直方图的箱数。 3. 然后,将输入图像调整为指定的大小(30x30)。 4. 接下来,创建一个空的 `std::vector<float>` 类型的 `descriptors`,用于存储计算得到的特征。 5. 使用 `hog.compute` 函数计算图像的HOG特征,并将结果存储在 `descriptors` 中。 6. 为了方便后续操作,动态分配了一个 `float*` 类型的特征数组 `feature_float`,并将 `descriptors` 中的部分数据复制到该数组中。 7. 最后,返回特征数组 `feature_float`。 另外,还有一个函数 `getRectsHogFeature` 用于将计算得到的HOG特征存储到一个名为 `dbox.feature` 的数组中。该函数接受一个 `cv::Mat` 类型的图像作为输入参数,并遍历一个名为 `d` 的容器,其中存储了一些矩形框的信息。 在每次迭代中,首先根据矩形框的位置和图像的大小,截取对应位置的图像区域。然后,调用 `get_hog_feature` 函数计算该区域的HOG特征,并将特征数据复制到 `dbox.feature` 数组中。 总的来说,这段代码实现了计算图像的HOG特征,并将特征存储到相应的数据结构中,以供后续使用。
阅读全文

相关推荐

大家在看

recommend-type

水利 SWMM PEST++ 自动率定

内容概要:使用PEST++自动率定SWMM模型的参数,实现参数的自动优选 适用人群:水利工作者 使用场景及目标:自动率定SWMM模型的参数 其他说明:也可以自动率定其他模型的参数
recommend-type

批量标准矢量shp互转txt工具

1.解压运行exe即可。(适用于windows7、windows10等操作系统) 2.标准矢量shp,转换为标准txt格式 4.此工具专门针对自然资源系统:建设用地报批、设施农用地上图、卫片等系统。
recommend-type

测量变频损耗L的方框图如图-所示。-微波电路实验讲义

测量变频损耗L的方框图如图1-1所示。 图1-1 实验线路 实验线路连接 本振源 信号源 功率计 定向耦合器 超高频毫伏表 滤波器 50Ω 混频器 毫安表
recommend-type

安装向导-pro/engineer野火版5.0完全自学一本通

1.3 安装向导 在第一次使用密码机,可以使用管理程序的安装向导功能,逐步完成对密码机 的基本配置。如果需要使用其他配置功能,可参考本章节其他管理操作说明。 安装向导提供以下主要配置功能: a) 初始化密码机:清空所有密钥及管理信息。 b) 管理员初始化:为保证设备的安全性、可靠性,及正常使用所有功能,建议 设置 3 个管理员(标准配置)。 c) 操作员初始化:用于启动密码服务。 d) RSA 密钥管理:产生 RSA 签名密钥对或加密密钥对并保存在密码设备内部。
recommend-type

中南大学943数据结构1997-2020真题&解析

中南大学943数据结构1997-2020真题&解析

最新推荐

recommend-type

Termux (Android 5.0+).apk.cab

Termux (Android 5.0+).apk.cab
recommend-type

基于go、vue开发的堡垒机系统(运维安全审计系统)全部资料+详细文档.zip

【资源说明】 基于go、vue开发的堡垒机系统(运维安全审计系统)全部资料+详细文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.