def convert_range(range_str): start , end = range_str.split('-') start_num = float(start.replace('w','')) end_num = float(end.replace('w','')) return int(round(start_num + end_num)/2 *10000) 如何该参数为读取一列
时间: 2024-03-20 15:39:41 浏览: 76
如果您要将一个列的数值数据应用到这个函数中进行转换,可以使用Pandas库中的apply函数。假设您的数据存储在一个DataFrame中,列名为range_column,则可以按照以下方式进行转换:
```python
import pandas as pd
def convert_range(range_str):
start, end = range_str.split('-')
start_num = float(start.replace('w', ''))
end_num = float(end.replace('w', ''))
return int(round((start_num + end_num) / 2 * 10000))
df = pd.read_csv('your_file.csv') # 读取包含数据的csv文件
df['new_column'] = df['range_column'].apply(convert_range) # 将函数应用到range_column这一列,并将结果存储在新的列new_column中
```
这样,您就可以将函数应用到整个列中,将每个单元格的字符串转换为整数,并将结果存储在一个新的列中。
相关问题
def split(params_str): p = [] start = 0 end = params_str.find(' ') while end != -1: p.append(int(params_str[start:end])) start = end + 1 end = params_str.find(' ', start) p.append(int(params_str[start:])) return p def split_str(params_str): p = [] start = 0 end = params_str.find(' ') while end != -1: p.append(params_str[start:end]) start = end + 1 end = params_str.find(' ', start) p.append(params_str[start:]) return p n = int(input()) tree = {} for _ in range(n): input_temp = input() temp = split_str(input_temp) a = temp[0] b = temp[1] if b not in tree: tree[b] = [] tree[b].append(a) target = input() childrens = tree.get(target, []) result = [] while childrens: node = childrens[0] childrens = childrens[1:] result.append(node) if node in tree: childrens.extend(tree[node]) result.sort() for res in result: print(res) 加注释
以下是您提供的代码添加注释后的版本:
```python
#义将字符串按空格分割成整数列表的函数
def split(params_str):
p = []
start = 0
end = params_str.find(' ')
while end != -1:
p.append(int(params_str[start:end]))
start = end + 1
end = params_str.find(' ', start)
p.append(int(params_str[start:]))
return p
# 定义将字符串按空格分割成字符串列表的函数
def split_str(params_str):
p = []
start = 0
end = params_str.find(' ')
while end != -1:
p.append(params_str[start:end])
start = end + 1
end = params_str.find(' ', start)
p.append(params_str[start:])
return p
# 获取输入的节点数
n = int(input())
tree = {}
# 构建树的字典结构
for _ in range(n):
input_temp = input()
temp = split_str(input_temp)
a = temp[0]
b = temp[1]
if b not in tree:
tree[b] = []
tree[b].append(a)
# 获取目标节点的子节点列表
target = input()
childrens = tree.get(target, [])
result = []
# 遍历获取目标节点的子孙节点,并添加到结果列表中
while childrens:
node = childrens[0]
childrens = childrens[1:]
result.append(node)
if node in tree:
childrens.extend(tree[node])
# 对结果进行排序并打印
result.sort()
for res in result:
print(res)
```
这个版本的代码添加了注释,以便更好地理解每个部分的功能和逻辑。希望这可以帮助您更好地理解代码的运行过程。
帮我优化一下这段python代码 import datetime class error: def __init__(self, log_path): pass self.log_path = log_path self.port = port self.end_time = end_time self.start_time = start_time def network_error(self, log_path: str, port: str, end_time: float, start_time: float = 0): with open(log_path, 'r') as f: for line in f.readlines(): log_time_str = line.split()[0] # 就看第一个是不是时间,如何是是时间戳的话看下要不要转 datetime_object = datetime.datetime.strptime( log_time_str, '%Y-%m-%d %H:%M:%S') log_time = datetime_object.timestamp() if start_time <= log_time <= end_time: if port in line: return True def no_finf_element(self, log_path: str, end_time: float, start_time: float = 0): with open(log_path, 'r') as f: for line in f.readlines(): log_time_str = line.split()[0] # 就看第一个是不是时间,如何是是时间戳的话看下要不要转 datetime_object = datetime.datetime.strptime( log_time_str, '%Y-%m-%d %H:%M:%S') log_time = datetime_object.timestamp() if start_time <= log_time <= end_time: if 'no such element' in line: return True def error_judge(self): if network_error(self.log_path, self.port, self.end_time, self.start_time) == True and no_finf_elemen(self.log_path, self.end_time, self.start_time) == True: pass # 不执行重跑 else: pass # 执行重跑
以下是对代码的优化建议:
1. class error 中的 __init__ 方法中有一个无用的 pass,可以删除。
2. class error 中的 network_error 和 no_finf_element 方法中有相同的代码,可以将重复代码提取出来,写成一个私有方法,然后在这两个方法中调用。
3. network_error 和 no_finf_element 方法中的循环读取文件的方式不够高效,可以使用 readline() 方法替换 readlines() 方法,每次只读取一行,这样可以减少内存占用。
4. network_error 和 no_finf_element 方法中可以使用 with open(log_path, 'r') as f: 的方式打开文件,这样可以自动关闭文件,避免忘记关闭导致的资源泄漏。
5. 在 error_judge 方法中,if network_error(...) == True 可以简写成 if network_error(...):
6. 在 error_judge 方法中,if no_finf_elemen(...) == True 应该是 if no_finf_element(...) == True:
下面是优化后的代码:
```python
import datetime
class error:
def __init__(self, log_path, port, end_time, start_time=0):
self.log_path = log_path
self.port = port
self.end_time = end_time
self.start_time = start_time
def _check_error(self, log_path, end_time, start_time, error_str):
with open(log_path, 'r') as f:
line = f.readline()
while line:
log_time_str = line.split()[0]
datetime_object = datetime.datetime.strptime(log_time_str, '%Y-%m-%d %H:%M:%S')
log_time = datetime_object.timestamp()
if start_time <= log_time <= end_time:
if error_str in line:
return True
line = f.readline()
return False
def network_error(self):
return self._check_error(self.log_path, self.end_time, self.start_time, self.port)
def no_finf_element(self):
return self._check_error(self.log_path, self.end_time, self.start_time, 'no such element')
def error_judge(self):
if self.network_error() and self.no_finf_element():
pass # 不执行重跑
else:
pass # 执行重跑
```
阅读全文
相关推荐

















