R语言用线性插值、抛物线插值、n-1阶多项式插值和样条插值绘制10/(1+x^2)的图像
时间: 2024-12-11 13:18:16 浏览: 24
R语言提供了一系列函数用于数据可视化和插值,对于给定的数据可以方便地创建各种插值图形。以下是使用线性插值(` approxfun()`)、抛物线插值(S型曲线通常不直接内置,但你可以使用 `predict()` 函数配合自定义模型)、n-1阶多项式插值(`polyroot()` 和 `uniroot()` 配合 `polyval()`)以及样条插值(`splinefun()` 和 `lines()` 函数)来绘制函数 `y = 10/(1 + x^2)` 的图像:
1. **线性插值**:
```R
x_data <- seq(-5, 5, length.out = 100)
y_data <- 10 / (1 + x_data^2)
lin_interp <- approxfun(x_data, y_data)
plot(x_data, y_data, type = "l", main = "Linear Interpolation")
lines(lin_interp(x), col = "red") # 红色线表示线性插值
```
2. **抛物线插值(需要自定义函数)**:
```R
fit_func <- function(x, a, b, c) {
return(a * x^2 + b * x + c)
}
poly_fit <- nls(10 / (1 + x^2) ~ fit_func(x, a, b, c), start = list(a = 1, b = 0, c = 0))
plot(x_data, predict(poly_fit, data.frame(x)), type = "l", col = "blue", main = "Quadratic Fit")
```
3. **n-10, -2, 1)) # 求解多项式的根
poly_interp <- function(x) {
return(sum(poly_coeff * c(x^(length(poly_coeff)-1), x^(length(poly_coeff)-2), 1)))
}
plot(x_data, poly_interp(x_data), type = "l", col = "green", main = "Polynomial Interpolation")
```
4. **样条插值**:
```R
library(splines)
spline_fit <- smooth.spline(x = x_data, y = 10 / (1 + x_data^2))
plot(spline_fit$x, spline_fit$y, type = "l", col = "purple", main = "Spline Interpolation")
lines(spline_fit$x, spline_fit$y, lty = 2) # 添加虚线作为参考
```
阅读全文