python解决车间调度问题代码
时间: 2023-11-20 10:55:53 浏览: 82
根据提供的引用,车间调度问题是一个经典的NP-hard问题,需要使用复杂的算法进行求解。以下是一个使用遗传算法求解车间调度问题的Python代码示例:
```python
import random
# 定义遗传算法的参数
POPULATION_SIZE = 50 # 种群大小
CROSSOVER_RATE = 0.9 # 交叉概率
MUTATION_RATE = 0.1 # 变异概率
GENERATION_COUNT = 100 # 迭代次数
# 定义车间调度问题的参数
MACHINE_COUNT = 3 # 机器数量
JOB_COUNT = 6 # 工件数量
OPERATION_COUNT = 2 # 工序数量
JOBS = [i for i in range(JOB_COUNT)]
MACHINES = [i for i in range(MACHINE_COUNT)]
OPERATIONS = [i for i in range(OPERATION_COUNT)]
# 定义工件的加工时间
PROCESSING_TIMES = [
[[3, 2, 1], [2, 1, 2]],
[[2, 3, 1], [1, 2, 1]],
[[1, 2, 3], [2, 3, 1]],
[[3, 1, 2], [1, 3, 2]],
[[2, 1, 3], [3, 2, 1]],
[[1, 3, 2], [2, 1, 3]]
]
# 定义种群类
class Population:
def __init__(self, size):
self.size = size
self.individuals = []
for i in range(size):
individual = Individual()
self.individuals.append(individual)
def get_fittest(self):
fittest = self.individuals[0]
for i in range(1, self.size):
if self.individuals[i].fitness > fittest.fitness:
fittest = self.individuals[i]
return fittest
# 定义个体类
class Individual:
def __init__(self):
self.genes = []
for i in range(JOB_COUNT):
gene = Gene()
self.genes.append(gene)
self.fitness = self.calculate_fitness()
def calculate_fitness(self):
makespan = 0
machine_time = [0] * MACHINE_COUNT
for i in range(JOB_COUNT * OPERATION_COUNT):
job_index = self.genes[i].job_index
machine_index = self.genes[i].machine_index
processing_time = PROCESSING_TIMES[job_index][self.genes[i].operation_index][machine_index]
start_time = max(machine_time[machine_index], makespan)
end_time = start_time + processing_time
machine_time[machine_index] = end_time
makespan = max(makespan, end_time)
return 1 / makespan
def crossover(self, other):
child1 = Individual()
child2 = Individual()
for i in range(JOB_COUNT):
if random.random() < CROSSOVER_RATE:
child1.genes[i] = self.genes[i]
child2.genes[i] = other.genes[i]
else:
child1.genes[i] = other.genes[i]
child2.genes[i] = self.genes[i]
return child1, child2
def mutate(self):
for i in range(JOB_COUNT):
if random.random() < MUTATION_RATE:
self.genes[i] = Gene()
# 定义基因类
class Gene:
def __init__(self):
self.job_index = random.choice(JOBS)
self.machine_index = random.choice(MACHINES)
self.operation_index = random.choice(OPERATIONS)
# 定义遗传算法函数
def genetic_algorithm():
population = Population(POPULATION_SIZE)
for i in range(GENERATION_COUNT):
new_population = Population(POPULATION_SIZE)
for j in range(POPULATION_SIZE // 2):
parent1 = roulette_wheel_selection(population)
parent2 = roulette_wheel_selection(population)
child1, child2 = parent1.crossover(parent2)
child1.mutate()
child2.mutate()
new_population.individuals[j * 2] = child1
new_population.individuals[j * 2 + 1] = child2
population = new_population
return population.get_fittest()
# 定义轮盘赌选择函数
def roulette_wheel_selection(population):
total_fitness = sum([individual.fitness for individual in population.individuals])
random_value = random.uniform(0, total_fitness)
current_sum = 0
for individual in population.individuals:
current_sum += individual.fitness
if current_sum > random_value:
return individual
# 运行遗传算法并输出结果
best_individual = genetic_algorithm()
print("Best makespan: ", 1 / best_individual.fitness)
```
以上代码使用遗传算法求解车间调度问题,其中定义了种群、个体、基因等类,并实现了交叉、变异、选择等操作。在遗传算法函数中,首先初始化种群,然后进行迭代,每次迭代都进行交叉、变异、选择等操作,最终返回最优个体。
阅读全文