基于transformer的行人重识别研究现状
时间: 2023-08-17 16:04:49 浏览: 169
基于transformer的车辆行人识别
5星 · 资源好评率100%
行人重识别是计算机视觉领域的一个重要任务,其目标是在不同的监控摄像头中准确地识别和匹配行人。基于Transformer的行人重识别研究还相对较少,目前主要集中在基于深度学习的方法上。
传统的行人重识别方法主要基于手工设计的特征提取器,例如局部特征描述符(如LBP、HOG)和全局特征描述符(如颜色直方图、SIFT)。然而,这些方法通常受限于特征表达的能力和泛化性能。
近年来,深度学习方法在行人重识别领域取得了显著的进展。其中,基于卷积神经网络(CNN)的方法被广泛应用。然而,CNN在处理行人图像时可能会受到变形、遮挡和尺度变化等问题的影响。
基于Transformer的行人重识别方法尝试利用Transformer的自注意力机制来处理行人图像序列。一种常见的做法是将行人图像序列转换为语义向量序列,然后使用Transformer模型进行特征提取和匹配。
目前,基于Transformer的行人重识别方法还处于探索阶段,研究者们正在探索如何充分利用Transformer的自注意力机制来捕捉行人图像序列中的重要信息。一些研究工作还尝试引入多尺度注意力机制和局部特征建模来提高行人重识别的性能。
总体而言,基于Transformer的行人重识别研究目前仍处于初级阶段,还需要更多的探索和改进来提高性能和鲁棒性。
阅读全文