python KDTree
时间: 2023-10-31 22:44:41 浏览: 238
Python KDTree是一个可以用于高维空间搜索的数据结构,它是一种基于二叉树的数据结构,用于快速地查找多维空间中的数据点。KDTree的建立过程是一个递归的过程,它将数据点按照某个维度进行划分,然后再将划分后的子集按照另一个维度进行划分,直到划分完所有维度。这样就可以将高维空间的数据映射到二叉树中,从而实现对高维数据的快速搜索。在搜索时,可以通过比较数据点与树节点之间的距离来确定搜索的方向,从而快速地找到最近邻的数据点。Python KDTree通常用于处理空间中的数据点,比如地理信息系统、计算机图形学和机器学习等领域。
相关问题
kdtree python代码
下面是一个简单的 Python 实现 K-D Tree 的示例代码:
```python
import heapq
class KdNode:
def __init__(self, point, left, right):
self.point = point
self.left = left
self.right = right
class KdTree:
def __init__(self, points):
self.root = self.build(points)
def build(self, points, depth=0):
n = len(points)
if n == 0:
return None
k = len(points[0])
axis = depth % k
sorted_points = sorted(points, key=lambda point: point[axis])
mid = n // 2
return KdNode(
point=sorted_points[mid],
left=self.build(sorted_points[:mid], depth + 1),
right=self.build(sorted_points[mid + 1:], depth + 1)
)
def nearest(self, point, k=1):
heap = []
self.search(self.root, point, heap, k)
return [(-dist, node.point) for dist, node in sorted(heap)]
def search(self, node, point, heap, k):
if node is None:
return
dist = sum((p - q) ** 2 for p, q in zip(node.point, point))
if len(heap) < k:
heapq.heappush(heap, (-dist, node))
else:
heapq.heappushpop(heap, (-dist, node))
axis = len(point) % len(node.point)
if point[axis] < node.point[axis]:
self.search(node.left, point, heap, k)
else:
self.search(node.right, point, heap, k)
```
使用方法:
```python
points = [(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)]
tree = KdTree(points)
nearest = tree.nearest((6, 7), k=2)
print(nearest) # [(-2, (5, 6)), (-5, (7, 8))]
```
上面代码展示了如何使用 K-D Tree 寻找离一个点最近的 k 个点。在这个例子中,我们构建了一个包含 5 个点的 K-D Tree,并查找距离点 (6, 7) 最近的 2 个点。输出结果为 [(-2, (5, 6)), (-5, (7, 8))],其中第一个元素表示距离,第二个元素表示点的坐标。
kdtree python实现
K-D Tree(K-Dimensional Tree)是一种用于处理 k 维空间数据的数据结构。它可以用于搜索最近邻点、范围搜索等问题。下面是一个简单的 Python 实现。
首先,我们需要一个节点类来表示树中的节点:
```python
class Node:
def __init__(self, point=None, axis=None, left=None, right=None):
self.point = point # 节点代表的点
self.axis = axis # 划分轴
self.left = left # 左子树
self.right = right # 右子树
```
接下来,我们需要一个 `build_kdtree` 函数来构建 K-D Tree:
```python
def build_kdtree(points, depth=0):
n = len(points)
if n <= 0:
return None
axis = depth % k # 选择轴
points.sort(key=lambda point: point[axis])
mid = n // 2
return Node(
point=points[mid],
axis=axis,
left=build_kdtree(points[:mid], depth+1),
right=build_kdtree(points[mid+1:], depth+1)
)
```
这个函数会递归地将点集分成两部分,构建 K-D Tree。
接下来,我们需要实现两个重要的子函数:`nearest_neighbor` 和 `range_search`。
`nearest_neighbor` 函数用于查找 K-D Tree 中最近的点:
```python
def nearest_neighbor(root, point):
best = None
best_distance = float("inf")
def search(node, depth=0):
nonlocal best, best_distance
if node is None:
return
distance = euclidean_distance(point, node.point)
if distance < best_distance:
best = node.point
best_distance = distance
axis = depth % k
if point[axis] < node.point[axis]:
search(node.left, depth+1)
if point[axis] + best_distance >= node.point[axis]:
search(node.right, depth+1)
else:
search(node.right, depth+1)
if point[axis] - best_distance <= node.point[axis]:
search(node.left, depth+1)
search(root)
return best
```
这个函数会从根节点开始递归地搜索 K-D Tree,找到与目标点最近的点。
最后,我们需要实现 `range_search` 函数来查找 K-D Tree 中给定范围内的所有点:
```python
def range_search(root, lower, upper):
result = []
def search(node, depth=0):
if node is None:
return
if lower <= node.point <= upper:
result.append(node.point)
axis = depth % k
if lower[axis] <= node.point[axis]:
search(node.left, depth+1)
if upper[axis] >= node.point[axis]:
search(node.right, depth+1)
search(root)
return result
```
这个函数会从根节点开始递归地搜索 K-D Tree,找到所有满足条件的点。
完整的代码如下所示:
```python
import math
k = 2
class Node:
def __init__(self, point=None, axis=None, left=None, right=None):
self.point = point # 节点代表的点
self.axis = axis # 划分轴
self.left = left # 左子树
self.right = right # 右子树
def euclidean_distance(p, q):
return math.sqrt(sum((p[i] - q[i])**2 for i in range(k)))
def build_kdtree(points, depth=0):
n = len(points)
if n <= 0:
return None
axis = depth % k # 选择轴
points.sort(key=lambda point: point[axis])
mid = n // 2
return Node(
point=points[mid],
axis=axis,
left=build_kdtree(points[:mid], depth+1),
right=build_kdtree(points[mid+1:], depth+1)
)
def nearest_neighbor(root, point):
best = None
best_distance = float("inf")
def search(node, depth=0):
nonlocal best, best_distance
if node is None:
return
distance = euclidean_distance(point, node.point)
if distance < best_distance:
best = node.point
best_distance = distance
axis = depth % k
if point[axis] < node.point[axis]:
search(node.left, depth+1)
if point[axis] + best_distance >= node.point[axis]:
search(node.right, depth+1)
else:
search(node.right, depth+1)
if point[axis] - best_distance <= node.point[axis]:
search(node.left, depth+1)
search(root)
return best
def range_search(root, lower, upper):
result = []
def search(node, depth=0):
if node is None:
return
if lower <= node.point <= upper:
result.append(node.point)
axis = depth % k
if lower[axis] <= node.point[axis]:
search(node.left, depth+1)
if upper[axis] >= node.point[axis]:
search(node.right, depth+1)
search(root)
return result
```
这是一个简单的 K-D Tree 的 Python 实现,可以用来解决搜索最近邻点、范围搜索等问题。
阅读全文