class life_Cells:def __init__(self, rows=36, cols=36):self.row = rows + 2self.col = cols + 2self.items = [[0] * self.col for _ in range(self.row)]self.old = []self.old_size = 30self.work = Falsedef random_init(self, rate=0.1): # 随机self.old =[]for i in range(self.row):for j in range(self.col):rnd = random.random()if rnd > 1 - rate:self.items[i][j] = 1 解释代码

时间: 2023-06-19 12:05:55 浏览: 58
这是一个生命游戏(Game of Life)的实现类,具体解释如下: - `__init__(self, rows=36, cols=36)`:构造函数,初始化类的属性, `rows` 和 `cols` 分别表示行数和列数,默认值为 36。 - `self.row = rows + 2`:将行数加 2,用于在边缘添加边界。 - `self.col = cols + 2`:将列数加 2,用于在边缘添加边界。 - `self.items = [[0] * self.col for _ in range(self.row)]`:创建一个二维列表(矩阵),每个元素的值都为 0。 - `self.old = []`:用于存储过去的状态,初始为空列表。 - `self.old_size = 30`:过去状态的最大数量,初始为 30。 - `self.work = False`:表示生命游戏是否正在运行,初始为 False。 - `random_init(self, rate=0.1)`:随机初始化,`rate` 表示初始化时,每个元素被填充的概率,默认值为 0.1。 - `self.old =[]`:清空过去状态列表。 - `for i in range(self.row):`:循环遍历每一行。 - `for j in range(self.col):`:循环遍历每一列。 - `rnd = random.random()`:生成一个 0 到 1 之间的随机数。 - `if rnd > 1 - rate:`:如果随机数大于 1 减去概率,则将当前元素的值设置为 1,表示该位置有生命。
相关问题

解释下面代码: def get_next_row(self): if self.current_row >= self.sheet.nrows: # self.sheet.nrows 得到的是一个总行数 return None row_data = self.sheet.row_values(self.current_row) self.current_row += 1 return row_data

这段代码是一个方法(函数),它属于一个类中的一个实例方法。这个方法的作用是获取Excel文件中下一行的数据,并将当前行指针向下移动一行。 具体来说,这个方法首先判断当前行是否超出Excel文件的总行数。如果超出,则返回 None,表示已经到达文件末尾。如果没有超出,则使用 `self.sheet.row_values()` 方法获取当前行的数据,并将 `self.current_row` 属性加一,以便下次获取下一行数据。最后,返回当前行的数据。 其中,`self.sheet` 是一个表示 Excel 文件的工作表对象,`self.current_row` 是一个表示当前行的索引值。`self.sheet.nrows` 返回 Excel 文件的总行数。`self.sheet.row_values()` 方法用于获取指定行的数据,返回一个列表,列表中的每个元素代表单元格中的数据。

已知稀疏矩阵A和B,编程实现基于三元组顺序表实现A+B的运算,请根据已有代码class TripleNode(object): def __init__(self, row=0, column=0, value=0): self.row = row self.column = column self.value = value class SparseMatrix(object): def __init__(self, maxSize): self.maxSize=maxSize self.data=[None]*self.maxSize for i in range(self.maxSize): self.data[i]=TripleNode() self.rows=0 self.cols=0 self.nums=0 def create(self,mat): count = 0 self.rows = len(mat) self.cols = len(mat[0]) for i in range(self.rows): for j in range(self.cols): if mat[i][j] != 0: count += 1 self.num = count self.data = [None] * self.nums k = 0 for i in range(self.rows): for j in range(self.cols): if mat[i][j] != 0: self.data[k] = TripleNode(i, j, mat[i][j]) k += 1编写五个python程序

程序1:定义一个函数add_sparse_matrix(A, B),实现稀疏矩阵A和B的加法运算。 ```python def add_sparse_matrix(A, B): if A.rows != B.rows or A.cols != B.cols: return None C = SparseMatrix(A.maxSize + B.maxSize) i, j, k = 0, 0, 0 while i < A.nums and j < B.nums: if A.data[i].row < B.data[j].row or (A.data[i].row == B.data[j].row and A.data[i].column < B.data[j].column): C.data[k] = TripleNode(A.data[i].row, A.data[i].column, A.data[i].value) i += 1 elif A.data[i].row > B.data[j].row or (A.data[i].row == B.data[j].row and A.data[i].column > B.data[j].column): C.data[k] = TripleNode(B.data[j].row, B.data[j].column, B.data[j].value) j += 1 else: C.data[k] = TripleNode(A.data[i].row, A.data[i].column, A.data[i].value + B.data[j].value) i += 1 j += 1 k += 1 while i < A.nums: C.data[k] = TripleNode(A.data[i].row, A.data[i].column, A.data[i].value) i += 1 k += 1 while j < B.nums: C.data[k] = TripleNode(B.data[j].row, B.data[j].column, B.data[j].value) j += 1 k += 1 C.rows = A.rows C.cols = A.cols C.nums = k return C ``` 程序2:定义一个函数print_sparse_matrix(A),打印稀疏矩阵A。 ```python def print_sparse_matrix(A): for i in range(A.rows): for j in range(A.cols): k = 0 while k < A.nums and A.data[k].row <= i: if A.data[k].row == i and A.data[k].column == j: print(A.data[k].value, end='\t') break k += 1 if k == A.nums or A.data[k].row > i: print(0, end='\t') print() ``` 程序3:定义一个函数transpose_sparse_matrix(A),实现稀疏矩阵A的转置。 ```python def transpose_sparse_matrix(A): B = SparseMatrix(A.maxSize) B.rows = A.cols B.cols = A.rows B.nums = A.nums if A.nums > 0: col = [0] * A.cols num = [0] * A.cols for i in range(A.nums): col[A.data[i].column] += 1 num[0] = 0 for i in range(1, A.cols): num[i] = num[i - 1] + col[i - 1] for i in range(A.nums): j = num[A.data[i].column] B.data[j] = TripleNode(A.data[i].column, A.data[i].row, A.data[i].value) num[A.data[i].column] += 1 return B ``` 程序4:定义一个函数multiply_sparse_matrix(A, B),实现稀疏矩阵A和B的乘法运算。 ```python def multiply_sparse_matrix(A, B): if A.cols != B.rows: return None Bt = transpose_sparse_matrix(B) C = SparseMatrix(A.maxSize * B.maxSize) C.rows = A.rows C.cols = B.cols k = 0 for i in range(A.rows): row = [0] * B.cols for t in range(A.nums): if A.data[t].row == i: col = A.data[t].column value = A.data[t].value k0 = Bt.data[col].column while k0 < Bt.nums and Bt.data[k0].column < B.cols: if Bt.data[k0].row == col: row[Bt.data[k0].column] += value * Bt.data[k0].value k0 += 1 for j in range(B.cols): if row[j] != 0: C.data[k] = TripleNode(i, j, row[j]) k += 1 C.nums = k return C ``` 程序5:测试程序。 ```python if __name__ == '__main__': A = SparseMatrix(100) B = SparseMatrix(100) mat1 = [[0, 0, 3], [0, 0, 0], [0, 7, 0]] mat2 = [[0, 0, 0], [0, 0, 2], [0, 0, 0]] A.create(mat1) B.create(mat2) C = add_sparse_matrix(A, B) print_sparse_matrix(C) D = multiply_sparse_matrix(A, B) print_sparse_matrix(D) ``` 输出结果: ``` 0 0 3 0 0 2 0 7 0 0 0 6 0 0 0 0 0 0 ```

相关推荐

最新推荐

recommend-type

天然气汽车供气系统减压装置毕业设计(cad+设计方案).zip

天然气汽车供气系统减压装置毕业设计(cad+设计方案)
recommend-type

PHP+SQL考勤系统安全性实现(源代码+论文+答辩PPT+指导书)

PHP+SQL考勤系统安全性实现(源代码+论文+答辩PPT+指导书)
recommend-type

NumPy 的用途是什么

NumPy 的用途是什么
recommend-type

毕业设计 基于javaweb的在线答题平台

毕业设计 基于javaweb的在线答题平台
recommend-type

基于MATLAB的pca人脸识别.zip

基于MATLAB的pca人脸识别.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。