后缀为csv的波士顿房价数据文件存放在文件夹路径csv_file_dir中。按下列考试要求进行数据处理: 1.读取数据文件中的所有数据为DataFrame格式,保留第0行的表头作为列名。获得样本列名为y_target列赋值给y,除此之外的13列赋值给X; 2.使用sklearn中的sklearn.feature_selection.VarianceThreshold定义基于方差的筛选模型,方差阈值threshold设置为10,其他参数保持默认值; 3.使用fit_transform训练2定义的筛选模型返回选出的新的特征X_new; 4.将第3步得到的特征数据X_new与y按列合并处理成新的DataFrame,按student_answer_path生成csv文件并保存,编码方式采用‘UTF-8’,所有值保留3位小数,小数点后尾部的0无需保存,如:0.200直接保存成0.2,不保留列名及行索引。
时间: 2024-02-27 11:56:49 浏览: 138
好的,根据您给出的考试要求,以下是Python代码实现:
```python
import pandas as pd
from sklearn.feature_selection import VarianceThreshold
# 1. 读取数据
csv_file_dir = '路径/csv_file_dir' # 根据实际路径修改
df = pd.read_csv(csv_file_dir, header=0) # 读取csv文件,header=0保留第0行表头作为列名
y = df['y_target'] # 样本列名为y_target列赋值给y
X = df.drop('y_target', axis=1) # 除了y_target列外的13列赋值给X
# 2. 定义基于方差的筛选模型
threshold = 10
selector = VarianceThreshold(threshold=threshold)
# 3. 训练筛选模型并返回选出的新特征X_new
X_new = selector.fit_transform(X)
# 4. 将X_new和y按列合并成新的DataFrame并保存
result_df = pd.concat([pd.DataFrame(X_new), y], axis=1)
result_df.to_csv('student_answer_path', encoding='UTF-8', index=False, header=False, float_format='%.3f')
```
其中,需要将代码中的路径和文件名按实际情况修改。
阅读全文