# 读入数据 forest_fires <- read.csv("forestfires.csv", header = TRUE) # 创建点图 dotplot(as.factor(forest_fires$month) ~ forest_fires$rain, xlab = "Rain", ylab = "Month", main = "Forest Fires by Month and Rain")

时间: 2024-02-29 20:56:23 浏览: 19
这段代码是用来读取名为"forestfires.csv"的数据文件,并创建一个点图,展示森林火灾在不同月份和不同降雨量下的情况。其中,x轴为降雨量,y轴为月份,点图中每个点代表一个数据点,点的颜色或形状可以表示其他变量。函数as.factor()将月份转化为因子变量,在点图中以离散的形式呈现。xlab参数设置x轴标签,ylab参数设置y轴标签,main参数设置图表标题。
相关问题

这段代码是什么意思:from pgmpy.factors.discrete import TabularCPD from pgmpy.models import BayesianNetwork from pgmpy.inference import VariableElimination import numpy as np import pandas as pd from pgmpy.models import BayesianModel from pgmpy.estimators import MaximumLikelihoodEstimator, BayesianEstimator forest_fires_model = BayesianNetwork([('PV', 'CF'), ('TS', 'CF'), ('TS', 'LT'), ('CF', 'FF'), ('LT', 'FF')]) Park_visitors_cpd = TabularCPD( variable='PV', # node name variable_card=2, # number of value of nodes values=[[0.97], [0.03]] ) Thunderstorms_cpd = TabularCPD( variable='TS', variable_card=2, values=[[0.1], [0.9]] ) Camp_fires_cpd = TabularCPD( variable='CF', variable_card=2, values=[[0.23, 0, 0.8, 0.02], [0.77, 1.00, 0.2, 0.98]], evidence=['PV', 'TS'], evidence_card=[2, 2] ) Lightning_cpd = TabularCPD( variable='LT', variable_card=2, values=[[0.43, 0.02], [0.57, 0.98]], evidence=['TS'], evidence_card=[2] ) Forest_fire_cpd = TabularCPD( variable='FF', variable_card=2, values=[[0.24, 0.13, 0.07, 0.06], [0.76, 0.87, 0.93, 0.94]], evidence=['CF','LT'], evidence_card=[2, 2] ) forest_fires_model.add_cpds( Park_visitors_cpd, Thunderstorms_cpd, Camp_fires_cpd, Lightning_cpd, Forest_fire_cpd ) forest_fires_model.get_cpds() forest_fires_model.get_independencies() print(forest_fires_model.check_model()) forest_fires_infer = VariableElimination(forest_fires_model) prob_FF = forest_fires_infer.query( variables=['FF'], evidence={'PV': 1}) print(prob_FF) prob_PV = forest_fires_infer.query( variables=['PV'], evidence={'FF': 1,'TS': 0}) print(prob_PV) a = [20,100,1000,10000] for i in a: try: print("samples number is: ", i) # get data raw_data = np.random.randint(low=0, high=2, size=(i, 5)) data = pd.DataFrame(raw_data, columns=['PV', 'TS', 'CF', 'LT', 'FF']) data.head() # build model model = BayesianNetwork([('PV', 'CF'), ('TS', 'CF'), ('TS', 'LT'), ('CF', 'FF'), ('LT', 'FF')]) # train based on MaximumLikelihood model.fit(data, estimator=BayesianEstimator) for cpd in model.get_cpds(): # print probability print("CPD of {variable}:".format(variable=cpd.variable)) print(cpd) except Exception as e: print(e)

这段代码是一个基于贝叶斯网络的森林火灾模型。首先,导入了一些必要的库和模块。然后,定义了一个贝叶斯网络对象forest_fires_model,其中包含了节点之间的依赖关系。接下来,通过TabularCPD类定义了各个节点的条件概率分布表(CPD),即给定父节点的情况下子节点的概率分布。然后,将这些CPD添加到贝叶斯网络对象中。 之后,通过调用get_cpds()方法和get_independencies()方法分别获取模型的所有CPDs和节点之间的独立性关系。然后,通过调用check_model()方法检查模型的一致性。 接下来,创建一个VariableElimination对象forest_fires_infer,用于进行推理。分别使用query()方法查询给定条件下的变量概率,并将结果打印出来。 最后,通过循环生成不同数量的样本数据,并使用BayesianEstimator进行模型训练和参数估计。然后打印每个节点的条件概率分布表。 注意:代码中可能存在排版错误,请根据需要进行适当调整。

error: failed to push some refs to 'https://gitee.com/three-fires_1_0/myhuo3.git'怎么解决

这个错误通常发生在使用Git推送代码时,可能是由于您的本地代码与远程代码库存在冲突导致的。以下是一些可能的解决方案: 1. 拉取远程分支并合并到本地分支后再进行推送。 2. 使用 `git pull --rebase` 命令拉取远程分支并重新应用您的本地提交。 3. 强制推送本地分支到远程分支,使用命令 `git push -f`。但是请注意,这将覆盖远程分支上的任何更改,因此请谨慎使用。 如果以上方法都不能解决问题,您可能需要检查您的Git配置或联系代码库管理员以获取帮助。

相关推荐

最新推荐

recommend-type

node-v0.8.10-sunos-x64.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

【课程设计】实现的金融风控贷款违约预测python源码.zip

【课程设计】实现的金融风控贷款违约预测python源码.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信